在椭圆x2+4y2=4上求一点,使其到直线2x+3y-6=0的距离最短。

admin2022-10-08  29

问题 在椭圆x2+4y2=4上求一点,使其到直线2x+3y-6=0的距离最短。

选项

答案设P(x,y)为椭圆x2+4y2=4上任意一点,则P到直线2x+3y-6=0的距离 [*] 求d的最小值点即求d2的最小值点,作 F(x,y,λ)=[*](2x+3y-6)2+λ(x2+4y2-4) 由拉格朗日乘数法,有 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/U0fRFFFM
0

最新回复(0)