首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Radio and Television Radio and television were major agents of social change in the 20th century. Radio was once the center
Radio and Television Radio and television were major agents of social change in the 20th century. Radio was once the center
admin
2010-07-24
37
问题
Radio and Television
Radio and television were major agents of social change in the 20th century. Radio was once the center for family entertainment and news and television enhanced this revolution by adding sight to sound. Both opened the windows to other lives, to remote areas of the world, and to history in the making. News coverage changed from early and late editions of newspapers to broadcast coverage from the scene. Play-by-play sports broadcasts and live concerts enhanced entertainment coverage. For many, the only cultural performances or sports events they would ever hear or see would come from the speakers or the screens in their living rooms. Each has engaged millions of people in the major historical events that have shaped the world.
If people could look at the sky and see how it is organized into frequency" bands used for different purposes, they would be amazed. Radio waves crisscross (十字形) the atmosphere at the speed of tight, delivering incredible amounts of information—navigational data, radio signals, television pictures—using devices for transmission and reception designed, built, and refined by a century of engineers.
Key figures in the late 1800s included Nikola Tesla, who developed the Tesla coil, and James Clerk Maxwell and Heinrich Hertz, who proved mathematically the possibility of transmitting electromagnetic signals between widely separated points. It was Guglielmo Marconi who was most responsible for taking the theories of radio waves out of the laboratory and applying them to practical devices. His "wireless" telegraph demonstrated its great potential for worldwide communication in 1901 by sending a signal—the letter "s"—in Morse code a distance of 2 000 miles across the Atlantic Ocean. Radio technology was just around the comer.
Immediate engineering challenges addressed the means of transmitting and receiving coded messages, and developing a device that could convert a high-frequency oscillating (振荡的) signal into an electric current capable of registering as sound. The first significant development was "the Edison effect", the discovery that the carbon filament (灯丝) in the electric light bulb could send out a stream of electrons to a nearby test electrode if it had a positive charge. In 1904, Sir John Ambrose Fleming of Britain took this one step further by developing the diode (二极管) which allowed electric current to be detected by a telephone receiver. Two years later, American Lee De Forest developed the triode (三极管), introducing a third electrode (the grid) between the filament and the plate. It could amplify a signal to make live voice broadcasting possible, and was quickly added to Marconi’s wireless telegraph to produce the radio.
Radio development was prevented by restrictions placed on airwaves during World War I. Technical limitations were also a problem. Few people had receivers, and those that did had to wear headphones. Radio was seen by many as a hobby for telegraphy fans. It would take a great deal of engineering before the radio would become the unifying symbol of family entertainment and the medium for news that was its destiny.
In the mid-1920s, technical developments expanded transmission distances, radio stations were built across the country, and the performance and appearance of the radio were improved. With tuning circuits, capacitors, microphones, oscillators, and loudspeakers, the industry blossomed in just a decade. By the mid-1930s almost every American household had a radio. The appearance of the transistor in the 1950s completely transformed its size, style, and portability.
Both television and radar were logical byproducts of the radio. Almost 50 years before television became a reality, its fundamental principles had been independently developed in Europe, Russia, and the United States. John Baird in England and Charles Jenkins in the United States worked independently to combine modulated light and a scanning wheel to reconstruct a scene. In 1925, Baird succeeded in transmitting a recognizable image.
Philo T. Farnsworth, a 21-year-old inventor from Utah, patented a scanning ray tube, and Vladimir Zworykin of RCA devised a superior television camera in 1930. Regularly scheduled broadcasts started shortly thereafter, and by the early 1940s there were 23 television stations in operation throughout the United States.
Shortly after World War Ⅱ, televisions began to appear on the market. The first pictures were faded and flickering, but more than a million sets were sold before the end of the decade. An average set cost $500 at a time when the average salary was less than $3 000 a year. In 1950 engineers perfected the process of production and prices dropped to $200 per set. Within 10 years 45 million units were sold.
A study of how human vision works enabled engineers to develop television technology. Images are retained in a viewer’s eye for only a fraction of a second after they strike it. By displaying images piece by piece at sufficient speed, the illusion of a complete picture can be created. By changing the image on the screen 25 to 30 times per second, movement can be realistically represented. Early scanning wheels slowly built a picture line by line. In contrast, each image on a modern color television screen is comprised of more than 100 000 pixels (像素), arranged in several hundred lines. The image displayed changes every few hundredths of a second. For a 15-minute newscast, the television must accurately process more than 1 billion units of information. Technical innovations that made this possible included a screen coated with millions of tiny dots of fluorescent compounds that emit light when struck by high: speed electrons.
Today this technology is in transition again, moving away from conventional television waves and on to separate digital signals. This holds the potential for making television interactive—allowing a viewer to play a game or order action replays. Cathode ray tubes with power-hungry electron guns are giving way to liquid crystal display (LCD) panels. Movie-style wide screens and flat screens are readily available. Digital signals enable High Definition Television (HDTV) to have almost doubled the usual number of pixels, giving a much sharper picture. The appearance of cable television and advances in fiber-optic technology will also help lift the present bandwidth (带宽) restrictions and increase image quality.
After radio had developed to a very high level, what appeared as a necessary result?
选项
A、Television and radar.
B、Modulated light and a scanning wheel.
C、Superior television camera.
D、Microphones and loudspeakers.
答案
A
解析
根据题干中的关键词radio had developed to a very high level定位到文章第七段首句;Both television and radar were logical byproducts of the radio。这里指出,电视和雷达都是收音机发展的合理的副产品。题干中的necessary result是对原文中的logical byproducts的同义转述,所以本题的正确答案为A)。
转载请注明原文地址:https://jikaoti.com/ti/SzEFFFFM
0
大学英语四级
相关试题推荐
Forthispart,youareallowed30minutestowriteashortessay"AVoluntaryServiceTriptoaPoverty-strickenArea".Youshou
ChangingourUnderstandingofHealthATheconceptofhealthholdsdifferentmeaningsfor
Researchersfoundfamilyinfluenceddelinquency.Attachmentandinvolvementwereboth【S1】______relatedtodelinquency.Children
Airportistransportationcenterusedforthelandingand【B1】______ofaircraft.Airportsprovidetransportationnotonlyforpeo
A、ThefastestpersontocrosstheAtlantic.B、Theyoungestpersontorowanoceanalone.C、Thepersonwhomakesthefastestwest
Automobileswerefamiliartopeopleofthelate19thcentury.Europeanengineerspioneeredgasolinepoweredvehiclesas【B1】_____
A、Everyotherday.B、Twiceaweek.C、Twiceaday.D、Onlyduringthesummer.C
HIVandItsTransmissionResearchhasrevealedagreatdealofvaluablemedical,scientific,andpublichealthinformationa
A、7:30to9:30.B、6:00to8:00.C、6:30to8:30.D、7:00to9:00.C事实题。原文提到早餐供应时间6:30—8:30,所以选C)。A)、B)、D)选项均不在此时间段内。
A、Halfanhour.B、Lessthananhour.C、Onehour.D、Twohours.B细节题。问题是女士考试考完用的实际时间。从W的回答中听出她花费不到一半的时间。
随机试题
2006年3月王某设立甲有限责任公司,公司注册资本为5万元,王某首次出资额3万元,其余部分自公司成立之日起2年内缴足。2006年5月王某再出资10万元设立乙有限责任公司,并以甲有限责任公司的名义再投资丙有限责任公司。根据我国公司法规定,请回答以下问题:
在人们已经出现疲劳的情况下,当人们看到计划将要完成时会受到一种激励,使人们的工作效率又重新上升,并一直会坚持到完成计划,达成目标。这种效应被称为“_____”。
下列有关播放PowerPoint2003演示文稿的控制方法中,()是错误的。
制备可溶性抗原最常用的细胞破碎方法不包括
根据《公司法》的规定,下列不属于公司应当进行解散清算的情形的是()。
下列关于以权益结算的股份支付说法中不正确的有()。
五种主要运输方式中,能真正实现“门到门”运输的是哪种()。
甲公司业务经理乙长期在丙餐厅签单招待客户,餐费由公司按月结清。后乙因故辞职。月底餐厅前去结账时,甲公司认为,乙当月的几次用餐都是招待私人朋友,因而拒付乙所有签单的餐费。下列哪一项是正确的?()
ChooseTWOletters,A-E.Writethecorrectletters.WhichTWOstatementsaremadeaboutRussiaintheearlyeighteenthcentury?
WheneverBettyattendedoneofherchildren’sperformances,shemanagedtokeepapokerface.Theunderlinedpartmeans______.
最新回复
(
0
)