设随机变量且P{|X|≠|Y|}=1. (I)求X与Y的联合分布律,并讨论X与Y的独立性; (Ⅱ)令U=X+Y,V=X—Y,讨论U与V的独立性.

admin2016-01-12  25

问题 设随机变量且P{|X|≠|Y|}=1.
(I)求X与Y的联合分布律,并讨论X与Y的独立性;
(Ⅱ)令U=X+Y,V=X—Y,讨论U与V的独立性.

选项

答案(I)由P{|X|≠|Y|}=1知,P{|X|=|Y|}=0.由此可得X与Y的联合分布律为 [*] 因为P{X=一1,Y=一1}≠P{X=一1}P{Y=一1},所以X与Y不独立. (Ⅱ)由(X,Y)的联合分布律知 [*] 所以U与V的联合分布律与边缘分布律为 [*] 即可验证U与V独立.

解析
转载请注明原文地址:https://jikaoti.com/ti/S7NRFFFM
0

相关试题推荐
随机试题
最新回复(0)