首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在曲线的所有切线中,与平面x+2y+z=4平行的切线
在曲线的所有切线中,与平面x+2y+z=4平行的切线
admin
2019-02-23
33
问题
在曲线
的所有切线中,与平面x+2y+z=4平行的切线
选项
A、只有一条.
B、只有两条.
C、至少有三条.
D、不存在.
答案
B
解析
t
0
∈(一∞,+∞),该曲线在点M
0
(x(t
0
),y(t
0
),z(t
0
))=(t
0
,一t
0
2
,t
0
3
)的切线方程为
该切线与平面x+2y+z=4平行的充要条件是,切线的方向向量(1,一2t
0
,3t
0
2
)与平面的法向量(1,2,1)垂直,即(1,一2t
0
,3t
0
2
).(1,2,1)=1—4t
0
+3t
0
2
=(3t
0
一1)(t
0
一1)=0,则t
0
=
=1,且
M
0
不在该平面上.因此选B.
转载请注明原文地址:https://jikaoti.com/ti/R5oRFFFM
0
考研数学一
相关试题推荐
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α,证明:矩阵B=[α,Aα,A4α]可逆.
设函数f(x)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0af(x)dx+∫0bg(x)dx=ab,其中g(x)是f(x)的反函数.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且证明:(1)ξ1,ξ2∈(0,3),使得f’(ξ1)一f’(ξ2)=0.(2)存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为a,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
假设G={(x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在圆G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一l的特征向量.求|A*+3E|.
设f(x)在区间[-π,π]上连续且满足f(x+π)=-f(x),则f(x)的傅里叶系数a2n=________
设X,Y为两个随机变量,若对任意非零常数a,b有D(aX+bY)=D(aX—bY),下列结论正确的是().
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设f(x)在[—π,π]上连续,且有f(x)=+∫—ππf(x)sinxdx,求f(x)。
随机试题
对一些较大的根及根茎类、坚硬的藤木类和肉质的果实类药材采用的产地加工方法主要为
A、末梢神经炎B、听力障碍C、视神经炎D、肝功能损害E、胃肠道不适乙胺丁醇的主要不良反应是()
血尿是下列哪种肿瘤的早期临床表现
患儿,7岁。发热1天,恶寒,无汗,头痛,鼻塞流清涕,喷嚏咳嗽,口不渴,咽不红。舌苔薄白,脉浮紧。其证候是
急性肾炎严重病例发生的时间多在起病后
下列有关仲裁机构的表述,不正确的是()。
一般资料:求助者,男性,15岁,高中一年级学生。案例介绍:半年前,求助者升入重点高中。两个月前,求助者因为感冒发烧,导致期中考试没有取得好成绩。一个多月前,求助者在复习功课时,头脑中突然闪念“期末考试再考不好怎么办”。这种想法让求助者非常紧张,竭力让自己
某班一次期末数学考试成绩,平均分为95.5分,后来发现小林的成绩是97分,被误写成79分。再次计算后,该班平均成绩是95.95分。则该班人数是:
WhatdoesDramadonprevent?____________________.WhatisthemaximumnumberofDramdontabletsanadultcanuseoneday?_______
A、Ithelpsusfinisheachtask.B、Ithelpsusbemorerelaxed.C、Ithelpsusstartthingsandkeepontrying.D、Ithelpsusforg
最新回复
(
0
)