首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2019-01-23
35
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
设A=2αα
T
+ββ
T
,由于|α|=1,α=ββ
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2α|α|
2
+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2
1
2
+y
2
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/QgBRFFFM
0
考研数学三
相关试题推荐
证明:正项级数an与数列{(1+a1)(1+a2).….(1+an)}是同敛散的.
计算积分I=.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
已知向量组等秩,则x=__________.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫abf(x)dx]2(b—a)∫abf2(x)dx.
计算二重积分I=,其中积分区域D={(x,y)|x2+y2≤R2}.
设函数z=f(x,y)具有二阶连续偏导数,且≠0,试证明:对任意的常数c,f(x,y)=c为一直线的充分必要条件是(f’y)2.f"xx一2f’x.f’y.f"xy+(f’x)2.f’yy=0.
设总体X的概率密度函数为f(x)=(一∞<x<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则E(S2)=_______.
设幂级数anχn的收敛半径为3,则幂级数nan(χ-1)n+1的收敛区间为_______.
随机试题
代理商的最主要特点是其无固定的营业场所。()
我们可以知道文章有一定的理,没有一定的法。所以我们只略谈原理,不像一般文法修辞书籍,在义法上多加剖析。“大匠能诲人以规矩,不能使人巧。”知道文章作法,不一定就做出好文章。艺术的基本原则是寓变化于整齐,整齐易说,变化则全靠心灵的妙运,这是所谓“神而明之,存乎
下列关于结合水和自由水的描述正确的是
依据《合同法》的有关条款,下列说法错误的是()。
《公路工程施工招标投标管理办法》指出:投标人应当具备招标文件规定的资格条件,具有承担所投标项目的相应能力。投标人应当按照招标文件的要求编制投标文件,并对招标文件提出的实质性要求和条件作出响应。招标文件中没有规定的标准和方法,不得作为评标的依据。并对投标中的
下列()选项,不会引起收入水平的上升。
下列哪些教学方法属于以探究活动为主的体育教学方法()。
从1978年党的十一届三中全会到1982年党的十二大,是邓小平理论初步形成时期。这一时期形成了()。
十八大报告指出,要千方百计增加居民收入。实现发展成果由人民共享,必须深化收入分配制度改革,努力实现居民收入增长和经济发展同步、劳动报酬增长和劳动生产率提高同步,提高居民收人在国民收入分配中的比重,提高劳动报酬在初次分配中的比重。初次分配和再分配都要兼顾效率
王韬(复旦大学2018年研;广西大学2016年研;中央民大2010年研;山东大学2008年研;兰州大学2007年研)
最新回复
(
0
)