设f(x)在(-a,a)(a>0)内连续,且f’(0)=2. 证明:对0<x<a,存在0<Θ<1,使得f(t)dt+f(t)dt=x[f(Θx)-f(-Θx)];

admin2020-03-24  44

问题 设f(x)在(-a,a)(a>0)内连续,且f’(0)=2.
证明:对0<x<a,存在0<Θ<1,使得f(t)dt+f(t)dt=x[f(Θx)-f(-Θx)];

选项

答案令F(x)=[*]f(t)dt+[*]f(t)dt,显然F(x)在[0,x]上可导,且F(0)=0,由 微分中值定理,存在0<Θ<1,使得F(x)=F(x)-F(0)=F’(Θx)x,即 [*]f(t)dt+[*]f(t)dt=x[f(Θx)-f(-Θx)].

解析
转载请注明原文地址:https://jikaoti.com/ti/P0iRFFFM
0

最新回复(0)