等比数列{an}各项均为正数,且2a1+3a2=1,a32=9a2a6。 求数列{an}通项公式。

admin2017-12-08  18

问题 等比数列{an}各项均为正数,且2a1+3a2=1,a32=9a2a6
求数列{an}通项公式。

选项

答案由a3=9a2a6=9a4,由于{an}各项均为正数,故a3=3a4,即a4=[*]a3,则等比数列{an}的公比为q=[*]。从而a2=[*]a1,与方程2a1+3a2=1联立,解得a1
解析
转载请注明原文地址:https://jikaoti.com/ti/OZm4FFFM
0

最新回复(0)