首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶可逆矩阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为
设A是n阶可逆矩阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为
admin
2019-03-12
48
问题
设A是n阶可逆矩阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A
-1
的每行元素之和均为
选项
答案
(1)将A中各列加到第一列,得 [*] 若a=0,则|A|=0,这与A是可逆矩阵矛盾,故a≠0. (2)令A=[α
1
,α
2
,…,α
n
],A=[β
1
,β
2
,…,β
n
],E=[e
1
,e
2
,…,e
n
],由A
-1
A=E,得 A
-1
[α
1
,α
2
,…,α
n
]=[e
1
,e
2
,…,e
n
], A
-1
α
j
e
j
,j=1,…,n, A
-1
α
1
+A
-1
α
2
+…+A
-1
α
n
=e
1
+e
2
+…+e
n
, A
-1
(α
1
+α
2
+…+α
n
)=[*] 另一方面,[*]=a(β
1
+β
2
+…+β
n
). 比较以上两式,可得 a(β
1
+β
2
+…+β
n
)=[*].β
1
+β
2
+…+β
n
=[*] 故A
-1
的每行元素之和为[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/O1BRFFFM
0
考研数学三
相关试题推荐
设f(χ)=,则f(χ)在χ=0处().
没函数y=y(χ)由方程χef(y)=eyln29确定,其中f具有二阶导数且f′≠1,则=_______.
设随机变量X1,X2,X3,X4相互独立且都服从标准正态分布N(0,1),已知对给定的α(0<α<1),数yα满足P{Y>yα}=a,则有
二阶微分方程y"=e2y满足条件y(0)=0,y’(0)=1的特解是y=________.
设随机变量(X,Y)的概率密度函数为f(x,y)=其分布函数为F(x,y)。(Ⅰ)求F(x,y);(Ⅱ)分别求(X,Y)关于X,Y的边缘概率密度,并问X与Y是否独立?
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,若f(x)在[0,1]上的最大值为M>0。设n>1,,证明:(Ⅰ)存在c∈(0,1),使得f(c)=;(Ⅱ)存在互不相同的ξ,η∈(0,1),使得。
已知随机变量X,Y均服从正态分布N(μ,σ2),且P{max(X,Y)≥μ}=a(0<a<1),则P{min(X,Y)<μ}=()
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3.(I)证明:向量组α1,α2,α3线性无关.(Ⅱ)证明:A不可相似对角化.
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(Ⅰ)验证f"(u)+=0;(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式。
用概率论方法证明:
随机试题
被投资企业发放股票股利时应该通过“应付股利”科目核算。()
A.休息与营养B.对症治疗C.柳氮磺胺吡啶D.抗结核药物的应用E.手术治疗治疗肠结核的关键是
大脑中动脉分为
喉上神经内支司声门以上喉黏膜的感觉,外支则支配
用于抵押的土地使用权有期限的,使用权人()在权利存续期限内设定抵押权。
“持续发展,重视协调,科教兴国,不断创新”这是我国2l世纪初可持续发展的()。
某区政府领导拟将一长期亏损的国有副食冷库基地改造成一个副食品批发市场。为此进行了一系列前期准备,包括项目审批、征地拆迁、建筑规划设计等。不曾想,外地一开发商已在离此地不远的地方率先投资兴建了一个综合市场,而综合市场中就有一个相当规模的副食品批发场区,足以满
根据下列资料.回答问题。2011年,新疆全口径财政收入1646.18亿元,增长38.2%。地方财政收入1038.80亿元,增长49.8%。地方财政一般预算收入720.91亿元,增长44.0%,其中,各项税收收入593.36亿元,增长42.6%。在
使用VC++2010打开考生文件夹下blank1中的解决方案。此解决方案的项目中包含一个源程序文件blank1.c。函数fun根据所给n名学生的成绩,计算出所有学生的平均成绩,把高于平均成绩的学生成绩求平均值并返回。例如,若有成绩为:50,60,70,8
Thehumannoseisanunderratedtool.Humansareoftenthoughttobeinsensitivesmellerscomparedwithanimals,butthisislar
最新回复
(
0
)