首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; ④ α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; ④ α肯定是其特征向量的矩阵个数为( )
admin
2019-01-14
22
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
; ②P
—1
AP; ③A
T
; ④
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
知α必是矩阵
属于特征值
的特征向量。
关于②和③则不一定成立。这是因为
(P
—1
AP)(P
—1
α)=P
—1
Aα=λP
—1
α,
按定义,矩阵P
—1
AP的特征向量是P
—1
α。因为P
—1
α与α不一定共线,因此α不一定是P
—1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(λE—A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量,故选B。
转载请注明原文地址:https://jikaoti.com/ti/Md1RFFFM
0
考研数学一
相关试题推荐
求矩阵的秩,其中a、b为参数.
已知向量组(Ⅰ)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)βα1=(1,-3,6,-1)T,βα2=(a,0,b,2)T等价,求a,b的值.
判定下列级数的敛散性:
求曲线积分I=∫L(y2+z2)dx+(z2+x2)dy+(x2+y2)dz,其中L是球面x2+y2+z2=2bx与柱面x2+y2=2ax(b>a>0)的交线(z≥0).L的方向规定为沿L的方向运动时,从z轴正向往下看,曲线L所围球面部分总在左边(如图10
求曲线x=acos3t,y=asin3t绕直线y=x旋转一周所得曲面的面积.
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)2,EX=2(1一θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
与直线,及直线都平行且经过坐标原点的平面方程是______.
若级数an(x—1)n在x=一1处收敛,则此级数在x=2处
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
设xOy平面第一象限中有曲线Г:y=y(x),过点,y’(x)>0.又M(x,y)为Г上任意一点,满足:弧段(Ⅰ)导出y=y(x)满足的积分、微分方程;(Ⅱ)导出y(x)满足的微分方程和初始条件;(Ⅲ)求曲线Г的表达式.
随机试题
原尿的成分与血浆相比不同的是
下列选项中,有利于改善再生障碍性贫血造血功能的是
下面哪一项不是肾上腺素的禁忌证
在炎症、创伤、心肌梗死、感染等情况下浓度降低的急性时相反应蛋白是()
依照有关规定,咨询机构承担的违约责任为()。
根据发展的需要,银行可以有多种市场定位策略,但是竞争定位策略与联盟定位策略存在明显的冲突,不能同时使用。()
按照心理学对智力的理解,优秀的教师、律师和领导表现突出的共同能力是()。
债权人转让权利可以不需经债务人同意,但应当通知债务人。()
教师专业化的尝试始于()
邓小平理论首要的基本理论问题是()。
最新回复
(
0
)