设函数f(x,y)连续,则二次积分等于( ).

admin2019-03-22  20

问题 设函数f(x,y)连续,则二次积分等于(    ).
         

选项 A、 
B、 
C、 
D、 

答案B

解析 所给二次积分的积分区域D,如图1.4.5.4所示,即
           D={(x,y)|π/2≤x≤π,sinx≤y≤1}.
    也可表示为D={(x,y)|0≤y≤1,π-arcsiny≤x≤π}.这是因为当π/2≤x≤π时,有一π/2≤x~π≤0≤π/2.
                  sin(x-π)=-sin(π-x)=-sinx=-y,
    得到x-π=arcsin(-y)=一arcsiny,  即x=π-arcsiny,
   故仅(B)入选.
         
转载请注明原文地址:https://jikaoti.com/ti/JpBRFFFM
0

最新回复(0)