首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,...,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
设α1,α2,...,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
admin
2013-03-29
38
问题
设α
1
,α
2
,...,α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是
选项
A、若α
1
,α
2
,...,α
s
线性相关,则Aα
1
,Aα
2
,...,Aα
s
线性相关.
B、若α
1
,α
2
,...,α
s
线性相关,则Aα
1
,Aα
2
,...,Aα
s
线性无关.
C、若α
1
,α
2
,...,α
s
线性无关,则Aα
1
,Aα
2
,...,Aα
s
线性相关.
D、若α
1
,α
2
,...,α
s
线性无关,则Aα
1
,Aα
2
,...,Aα
s
线性无关.
答案
A
解析
因为(Aα
1
,Aα
2
,...,Aα
s
=A(α
1
,α
2
,...,α
s
),所以
r(Aα
1
,Aα
2
,...,Aα
s
)≤r(α
1
,α
2
,...,α
s
).
因为α
1
,α
2
,...,α
s
线性相关,有r(α
1
,α
2
,...,α
s
)
r(Aα
1
,Aα
2
,...,Aα
s
)
所以Aα
1
,Aα
2
,...,Aα
s
线性相关,故应选(A).
注意,当α
1
,α
2
,...,α
s
线性无关时,若秩r(A)=n,则Aα
1
,Aα
2
,...,Aα
s
线性无关,否则Aα
1
,Aα
2
,...,Aα
s
可以线性相关.因此,(C),(D)均不正确.
转载请注明原文地址:https://jikaoti.com/ti/J3mRFFFM
0
考研数学三
相关试题推荐
从莫尔1516年发表《乌托邦》到现在,社会主义已经有500多年的历史了。社会主义发展史上的第一次历史性飞跃是指()
我国稳定解决了十几亿人的温饱问题,总体上实现小康,人民美好生活需要日益广泛,不仅对物质文化生活提出了更高要求,而且在民主、法治、公平、正义、安全、环境等方面的要求日益增长。老百姓解决温饱后的第一需求是()
在中国共产党成立100周年的重要历史时刻。在党和人民胜利实现第一个百年奋斗目标,全面建成小康社会,正在向着全面建成社会主义现代化强国的第二个百年奋斗目标迈进的重大历史关头,党的十九届六中全会于2021年11月8日至11日在北京胜利举行,审议通过了《中共中央
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设A,B是同阶正定矩阵,则下列命题错误的是().
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
随机试题
课程实施的忠实取向
长宽比不长于3的缺陷定义为圆形缺陷,包括气孔、夹渣和夹钨。
锚杆挡土墙的施工工艺程序中,挡土板安装的紧前工序是()。
安全检查的主要内容有( )。
会计核算软件是()。
A企业2010年的销售收入80亿元,销售净利率为15%,2010年年初所有者权益为110亿元,2010年年末所有者权益为130亿元,则该企业2010年净资产收益率为()。
法人的民事权利能力与自然人的民事权利能力的不同之处不包括()。
我国社会主义职业道德的特点包括()。
下列哪个主体不能担任精神病人的监护人?
医疗体制改革关系到每个市民的________利益,因此,要多听取医务人员和市民的意见,让他们写出医疗体制改革方案,提出妙计。领导小组集中大家的智慧,________出最佳的医疗体制改革方案。填入画横线部分最恰当的一项是:
最新回复
(
0
)