将参加某竞赛的四位选手的最终得分(均为整数)两两相加得到6个不同的数,已知其中5个数为99、113、118、130、144,则四人中得分第二高者和第三高者的分数之和为( )。

admin2016-01-14  26

问题 将参加某竞赛的四位选手的最终得分(均为整数)两两相加得到6个不同的数,已知其中5个数为99、113、118、130、144,则四人中得分第二高者和第三高者的分数之和为(    )。

选项 A、113
B、118
C、121
D、125

答案B

解析 设四位选手的最终得分分别为A、B、C、D,A<B<C<D,则可得(A+B)+(C+D)=(A+C)+(B+D)=(A+D)+(B+C),而已知其中的5个数中,99+144=113+130,所以未知的那个数与118的和应为243,则那个数应为125。由于A<B<C<D,所以A+B=99,A+C=113,B+D=130,C+D=144,则B+C可能为118,也可能为125。由(A+C)一(A+B)=113—99,可得C—B=14为偶数,则B+C也应该为偶数,所以B+C=118。答案为B。
转载请注明原文地址:https://jikaoti.com/ti/HL3pFFFM
本试题收录于: 行测题库国家公务员分类
0

随机试题
最新回复(0)