设一元函数f(x)有下列四条性质。 ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用表示可由性质P推出性质Q,则有( )

admin2017-01-21  63

问题 设一元函数f(x)有下列四条性质。
①f(x)在[a,b]连续;
②f(x)在[a,b]可积;
③f(x)在[a,b]存在原函数;
④f(x)在[a,b]可导。
若用表示可由性质P推出性质Q,则有(     )

选项 A、 
B、 
C、 
D、 

答案C

解析 这是讨论函数f(x)在区间[a,b]上的可导性、连续性及可积性与原函数存在性间的关系问题。由f(x)在[a,b]上可导f(x)在[a,b]可积且存在原函数。故选C。
转载请注明原文地址:https://jikaoti.com/ti/HHSRFFFM
0

相关试题推荐
最新回复(0)