首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (I)当a,b为何值时,β不可由α1,α2,α3线性表示; (Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
设 (I)当a,b为何值时,β不可由α1,α2,α3线性表示; (Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
admin
2017-12-18
22
问题
设
(I)当a,b为何值时,β不可由α
1
,α
2
,α
3
线性表示;
(Ⅱ)当a,b为何值时,β可由α
1
,α
2
,α
3
线性表示,写出表达式.
选项
答案
[*] (I)当a≠一6,a+2b一4≠0时,因为r(A)≠[*]所以β不可由α
1
,α
2
,α
3
线性表示; (Ⅱ)当a≠一6,a+2b—4=0时, [*] β可由α
1
,α
2
,α
3
唯一线性表示,表达式为β=2α
1
一α
2
+0α
3
; 当a=一6时, [*] 当a=一6,b≠5时,由[*],β可由α
1
,α
2
,α
3
唯一线性表示,表达式为β=6α
1
+1α
2
+2α
3
; 当a=-6,b=5时,由[*],β可由α
1
,α
2
,α
3
线性表示,表达式为β=(2k+2)α
1
+(k一1)α
2
+kα
3
,其中k为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/EwVRFFFM
0
考研数学一
相关试题推荐
设A,B为三阶矩阵,且AB=A—B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x)
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x)
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为__________.
假设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是来自X的简单随机样本,试求:(1)端点θ的最大似然估计量;(2)端点θ的0.95置信区间.
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求未知参数θ的最大似然估计量;
微分方程y’’一6y’+8y—ex+e2x的一个特解应具有形式(其中a,b为常数)()
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.已知ξ在基β1,β2,β3下的坐标为[1,0,2]T,求ξ在基α1,α2,α3下的坐标;
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
随机试题
下列哪个房间的采光系数标准最低值为最大?(2007,22)
关于施工现场大气污染防治的说法,正确的有()。
下列产品定价方法中,属于竞争导向定价法的有()。
下列各项中,属于融资租赁标准的有()。
甲公司2013年1月1日以3000万元的价格购入乙公司30%的股份,另支付相关费用10万元。用公司取得该项投资后对乙公司具有重大影响。购入时乙公司可辨认净资产的公允价值为11000万元,账面价值为10000万元,公允价值与账面价值的差额是由一项存货造成的,
会计账簿记录发生错误时,应当按照规定的更正方法进行更正。下列不是错账更正方法能是()。
研究阶层的心理特征,属于社会心理学的()层面。
学习活动组织与评价设计包括()。
OneSundaymorning,MillieandAmywenttoSunshinePark.Theylovetochatthere.Asusual,theysat【C1】______abigtree.Sudde
如果要彻底退出路由器或者交换机的配置模式,输入的命令是()。
最新回复
(
0
)