设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤1/2(x∈[0,1]).

admin2018-05-21  56

问题 设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤1/2(x∈[0,1]).

选项

答案由泰勒公式得 f(0)=f(x)-f’(x)x+[*]f"(ξ1)x2,ξ1∈(0,x), f(1)=f(x)+f’(x)(1-x)+[*]f"(ξ2)(1-x)2,ξ2∈(x,1), 两式相减,得f’(x)=1/2f"(ξ1)x2-[*]f"(ξ2)(1-x)2. 两边取绝对值,再由|f"(x)|≤1,得 |f’(x)|≤1/2[x2+(1-x)2]=(x-[*]≤1/2.

解析
转载请注明原文地址:https://jikaoti.com/ti/EYVRFFFM
0

相关试题推荐
最新回复(0)