首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Why Pagodas Don’t Fall Down A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flim
Why Pagodas Don’t Fall Down A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flim
admin
2014-12-26
27
问题
Why Pagodas Don’t Fall Down
A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flimsiest old buildings—500 or so wooden pagodas—remained standing for centuries? Records show that only two have collapsed during the past 1400 years. Those that have disappeared were destroyed by fire as a result of lightning or civil war.
B)The disastrous Hanshin earthquake in 1995 killed 6,400 people, toppled elevated highways, flattened office blocks and devastated the port area of Kobe. Yet it left the magnificent five-storey pagoda at the Toji temple in nearby Kyoto unscathed, though it levelled a number of buildings in the neighbourhood.
C)Japanese scholars have been mystified for ages about why these tall, slender buildings are so stable. It was only thirty years ago that the building industry felt confident enough to erect office blocks of steel and reinforced concrete that had more than a dozen floors. With its special shock absorbers to dampen the effect of sudden sideways movements from an earthquake, the thirty-six-storey Kasumigaseki building in central Tokyo—Japan’s first skyscraper—was considered a masterpiece of modern engineering when it was built in 1968.
D)Yet in 826, with only pegs and wedges to keep his wooden structure upright, the master builder Kobodaishi had no hesitation in sending his majestic Toji pagoda soaring fifty-five metres into the sky—nearly half as high as the Kasumigaseki skyscraper built some eleven centuries later. Clearly, Japanese carpenters of the day knew a few tricks about allowing a building to sway and settle itself rather than fight nature’ s forces. But what sort of tricks?
E)The multi-storey pagoda came to Japan from China in the sixth century. As in China, they were first introduced with Buddhism and were attached to important temples. The Chinese built their pagodas in brick or stone, with inner staircases, and used them in later centuries mainly as watchtowers.
F)When the pagoda reached Japan, however, its architecture was freely adapted to local conditions—they were built less high, typically five rather than nine storeys, made mainly of wood and the staircase was dispensed with because the Japanese pagoda did not have any practical use but became more of an art object. Because of the typhoons that batter Japan in the summer, Japanese builders learned to extend the eaves of buildings further beyond the walls. This prevents rainwater gushing down the walls. Pagodas in China and Korea have nothing like the overhang that is found on pagodas in Japan.
G)The roof of a Japanese temple building can be made to overhang the sides of the structure by fifty percent or more of the building’ s overall width. For the same reason, the builders of Japanese pagodas seem to have further increased their weight by choosing to cover these extended eaves not with the porcelain tiles of many Chinese pagodas but with much heavier earthenware tiles.
H)But this does not totally explain the great resilience of Japanese pagodas. Is the answer that, like a tall pine tree, the Japanese pagoda—with its massive trunk—like central pillar known as shinbashira—simply flexes and sways during a typhoon or earthquake? For centuries, many thought so. But the answer is not so simple because the startling thing is that the shinbashira actually carries no load at all.
I)In fact, in some pagoda designs, it does not even rest on the ground, but is suspended from the top of the pagoda—hanging loosely down through the middle of the building. The weight of the building is supported entirely by twelve outer and four inner columns.
J)And what is the role of the shinbashira, the central pillar? The best way to understand the shinbashira’ s role is to watch a video made by Shuzo Ishida, a structural engineer at Kyoto Institute of Technology. Mr Ishida, known to his students as "Professor Pagoda" because of his passion to understand the pagoda, has built a series of models and tested them on a "shake-table" in his laboratory. In short, the shinbashira was acting like an enormous stationary pendulum. The ancient craftsmen, apparently without the assistance of very advanced mathematics, seemed to grasp the principles that were, more than a thousand years later, applied in the construction of Japan’ s first skyscraper.
K)What those early craftsmen had found by trial and error was that under pressure a pagoda’ s loose stack of floors could be made to slither to and fro independent of one another. Viewed from the side, the pagoda seemed to be doing a snake dance—with each consecutive floor moving in the opposite direction to its neighbours above and below. The shinbashira, running up through a hole in the centre of the building, constrained individual storeys from moving too far because, after moving a certain distance, they banged into it, transmitting energy away along the column.
L)Another strange feature of the Japanese pagoda is that, because the building tapers, with each successive floor plan being smaller than the one below, none of the vertical pillars that carry the weight of the building is connected to its corresponding pillar above. In other words, a five-storey pagoda contains not even one pillar that travels right up through the building to carry the structural loads from the top to the bottom.
M)More surprising is the fact mat the individual storeys of a Japanese pagoda, unlike their counterparts elsewhere, are not actually connected to each other. They are simply stacked one on top of another like a pile of hats. Interestingly, such a design would not be permitted under current Japanese building regulations.
N)And the extra-wide eaves? Think of them as a tightrope walker’s balancing pole. The bigger the mass at each end of the pole, the easier it is for the tightrope walker to maintain his or her balance. The same holds true for a pagoda. "With the eaves extending out on all sides like balancing poles", says Mr Ishida, "the building responds to even the most powerful jolt of an earthquake with a graceful swaying, never an abrupt shaking". Here again, Japanese master builders of a thousand years ago anticipated concepts of modern structural engineering.
The smaller weight at each end of the pole, the harder it is for tightrope walkers to keep balance.
选项
答案
N
解析
根据关键词“tightrope walkers”定位于最后一段。第二句“The bigger themass at each end of the pole,the easier it is for me tightrope walker to maintain his orher balance.”两端的重量越大,走钢丝的人越容易保持平衡。题干是原文的同义转述,即两端重量越小,越不容易保持平衡。故选N。
转载请注明原文地址:https://jikaoti.com/ti/DpgFFFFM
0
大学英语六级
相关试题推荐
Welcome,Freshmen.HaveaniPod.A)Takingastepthatmanyprofessorsmayviewasabitcounterproductive,somecollegesanduni
Ifyou’reoneofthosepeoplewhotendstoputonweightaroundyourmiddle,whatdoctorscallan"appleshape"—whattherestof
Ifyou’reoneofthosepeoplewhotendstoputonweightaroundyourmiddle,whatdoctorscallan"appleshape"—whattherestof
Ifyou’reoneofthosepeoplewhotendstoputonweightaroundyourmiddle,whatdoctorscallan"appleshape"—whattherestof
HomelandSecuritySecretaryJanetNapolitanowarnedthatwejustcan’twin,canwe,airlines?Overthepastseveralyears,asmo
HomelandSecuritySecretaryJanetNapolitanowarnedthatwejustcan’twin,canwe,airlines?Overthepastseveralyears,asmo
Biologically,thereisonlyonequalitywhichdistinguishesusfromanimals:theabilitytolaugh.Inauniversewhichappearst
A、Increasingfinesfortrafficviolation.B、Reducingtollsonhighways.C、Banningpublictransportpartially.D、Enlarginginsura
WhyPagodasDon’tFallDownA)Inalandsweptbytyphoonsandshakenbyearthquakes,howhaveJapan’stallestandseeminglyflim
Everyyearthroughouttheworld【C1】______6,000earthquakesaredetected.Thevastmajorityoftheseare【C2】______toosmallorto
随机试题
A.外邪侵袭B.湿邪困脾C.脾肾阳虚D.脾胃湿热头面先肿,继而波及全身,小便短少,发热恶风者多因
健脾丸的作用是
建设工程勘察、设计的招标人应当在()推荐的候选方案中确定中标方案。
公司股票筹资相对于债券筹资的优点在于()。
按组态图或回路图上的规定,在系统信号发生端(即变送器、检测元件或控制输出的操作端)施加或给出模拟信号,检查系统误差。最大误差值不应超过系统各单元仪表允许基本误差平方和的( )。
职工出差借款凭据,必须附在记账凭证之后作为记账依据。收回借款时另开收据或退回借据副本,不能退还原借款凭据。()
根据下列资料,回答下列问题。央行2015年3月公布了2014年12月金融统计数据报告。具体如下:①广义货币增长12.2%,狭义货币增长3.2%。12月月末,广义货币(M2)余额122.84万亿元,同比增长12.2%,增速分别比上月月末和上年年末低0.
被称为我国古代园林景观雕塑第一座丰碑的是汉代昆明池石刻_______像和_______。
必然性和偶然性是揭示事物产生、发展、灭亡不同趋势的一对范畴。二者之间是对立统一关系。其中其区别和对立表现在()
设函数z=f(x,y)(xy≠0)满足=y2(x2—1),则dz=________。
最新回复
(
0
)