首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2-x-2)|x3-x|的不可导点有
函数f(x)=(x2-x-2)|x3-x|的不可导点有
admin
2016-10-20
25
问题
函数f(x)=(x
2
-x-2)|x
3
-x|的不可导点有
选项
A、3个.
B、2个.
C、1个.
D、0个.
答案
B
解析
函数|x|,|x-1|,|x+1|分别仅在x=0,x=1,x=-1不可导且它们处处连续.因此只需在这些点考察f(x)是否可导.
方法1° f(x)=(x
2
-x-2)|x||x-1||x+1|,只需考察x=0,1,-1是否可导.
考察x=0,令g(x)=(x
2
-x-2)|x
2
-1|,则f(x)=g(x)|x|,g’(0)存在,g(0)≠0,φ(x)=|x|在x=0连续但不可导,故f(x)在x=0不可导.
考察x=1,令g(x)=(x
2
-x-2)|x
2
+x|,φ(x)=|x-1|,则g’(1)存在,g(1)≠0,φ(x)在x=1连续但不可导,故f(x)=g(x)φ(x)在x=1不可导.
考察x=-1,令g(x)=(x
2
-x-2)|x
2
-x|,φ(x)=|x+1|,则g’(-1)存在,g(-1)=0,φ(x)在x=-1连续但不可导,故f(x)=g(x)φ(x)在x=-1可导.因此选(B).
方法2° 按定义考察.
在x=0处
故f’
+
(0)≠f’
-
(0).因此f(x)在x=0不可导.
在x=0处
故f’
+
(1)≠f’
-
(1).因此f(x)在x=1不可导.
因此f(x)在x=-1可导.应选(B).
转载请注明原文地址:https://jikaoti.com/ti/DUxRFFFM
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 C
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
将一平面薄板铅直浸没于水中,取x轴铅直向下,y轴位于水面上,并设薄板占有xOy面上的闭区域D,试用二重积分表示薄板的一侧所受到的水压力.
设f(x)∈C(1)[a,b],f(x)≥0,A为平面曲线y=f(x),a≤x≤b绕x轴旋转所得旋转曲面的面积,试用计算曲面面积的二重积分公式证明:并由此计算正弦弧段y=sinx,0≤x≤π绕z轴旋转所得旋转曲面的面积.
设平面薄片所占的闭区域D是由螺线ρ=2ψ上一段弧(0≤ψ≤π/2)与射线ψ=π/2所围成,它的面密度为μ(x,y)=x2+y2,求这薄片的质量.
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/3.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
命题①f(x),g(x)在xn点的某邻域内都无界,则f(x),g(x)在xn点的该邻域内一定无界;②limf(x)=∞,limg(x)=∞,则lim[f(x)g(x)]=∞;③f(x)及g(x)在xn点的某邻域内均有界,则f(x),g(x)在xo的该邻域内
随机试题
(2008年第61题)患者,男,50岁。2个月前,因急性前壁心肌梗死入院,经行左前降支内药物支架植入后,住院7天出院。此后患者无任何症状,服用药物1个月后自行停用。2小时前在睡眠中再次发生剧烈胸痛,ECG证实为急性前壁再发心肌梗死。该患者本次再梗的最可能原
解热镇痛抗炎药的作用不包括
A.流行性乙型脑炎B.布鲁氏菌病C.猪繁殖与呼吸综合征D.猪瘟E.猪细小病毒病夏季,某母猪群发生流产,产死胎或木乃伊胎,公猪出现睾丸炎或睾丸一侧性肿大,分离的病原具有血凝特性,该病可能是
A、本经配穴B、表里经配穴C、上下配穴D、前后配穴E、左右配穴申脉配后溪属
背景资料:某施工单位承接了12km的山区二级公路工程项目,其中包含一座长100m的双车道隧道。隧道起止桩号为K5+640~K5+750,隧道围岩为砂岩,岩体完整,呈块状整体,进出口岩石裸露。隧道采用传统矿山法施工。隧道洞口段路面采用水泥混凝土路面,路面
下列各项中,企业在选择商品化会计软件时必须考虑的包括()。
尽职调查通常分为法律、财务、业务三部分。下列不属于法律尽职调查关注的重点问题的是()。
【玛雅历】
下列关于我国国家结构形式的表述,正确的有()。
在以下协议中,哪些属于组播管理协议?()
最新回复
(
0
)