首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below. Keep ta
You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below. Keep ta
admin
2014-12-30
23
问题
You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below.
Keep taking the tablets
The history of aspirin is a product of a rollercoaster ride through time, of accidental discoveries, intuitive reasoning and intense corporate rivalry.
In the opening pages of Aspirin: The Remarkable Story of a Wonder Drug, Diarmuid Jeffreys describes this little white pill as ’one of the most amazing creations in medical history, a drug so astonishingly versatile that it can relieve headache, ease your aching limbs, lower your temperature and treat some of the deadliest human diseases’.
Its properties have been known for thousands of years. Ancient Egyptian physicians used extracts from the willow tree as an analgesic, or pain killer. Centuries later the Greek physician Hippocrates recommended the bark of the willow tree as a remedy for the pains of childbirth and as a fever reducer. But it wasn’t until the eighteenth and nineteenth centuries that salicylates — the chemical found in the willow tree — became the subject of serious scientific investigation. The race was on to identify the active ingredient and to replicate it synthetically. At the end of the nineteenth century a German company, Friedrich Bayer & Co, succeeded in creating a relatively safe and very effective chemical compound, acetylsalicylic acid, which was renamed aspirin.
The late nineteenth century was a fertile period for experimentation, partly because of the hunger among scientists to answer some of the great scientific questions, but also because those questions were within their means to answer. One scientist in a laboratory with some chemicals and a test tube could make significant breakthroughs — whereas today, in order to map the human genome for instance, one needs ’an army of researchers, a bank of computers and millions and millions of dollars’.
But an understanding of the nature of science and scientific inquiry is not enough on its own to explain how society innovates. In the nineteenth century, scientific advance was closely linked to the industrial revolution. This was a period when people frequently had the means, motive and determination to take an idea and turn it into reality. In the case of aspirin that happened piecemeal — a series of minor, often unrelated advances, fertilised by the century’s broader economic, medical and scientific developments, that led to one big final breakthrough.
The link between big money and pharmaceutical innovation is also a significant one. Aspirin’s continued shelf life was ensured because for the first 70 years of its life, huge amounts of money were put into promoting it as an ordinary everyday analgesic. In the 1970s other analgesics, such as ibuprofen and paracetamol, were entering the market, and the pharmaceutical companies then focused on publicising these new drugs. But just at the same time, discoveries were made regarding the beneficial role of aspirin in preventing heart attacks, strokes and other afflictions. Had it not been for these findings, this pharmaceutical marvel may well have disappeared.
So the relationship between big money and drugs is an odd one. Commercial markets are necessary for developing new products and ensuring that they remain around long enough for scientists to carry out research on them. But the commercial markets are just as likely to kill off certain products when something more attractive comes along. In the case of aspirin, a potential ’wonder drug’ was around for over 70 years without anybody investigating the way in which it achieved its effects, because they were making more than enough money out of it as it was. If ibuprofen or paracetamol had entered the market just a decade earlier, aspirin might then not be here today. It would be just another forgotten drug that people hadn’t bothered to explore.
None of the recent discoveries of aspirin’s benefits were made by the big pharmaceutical companies; they were made by scientists working in the public sector. ’The reason for that is very simple and straightforward,’ Jeffreys says in his book. ’Drug companies will only pursue research that is going to deliver financial benefits. There’s no profit in aspirin any more. It is incredibly inexpensive with tiny profit margins and it has no patent any more, so anyone can produce it.’ In fact, there’s almost a disincentive for drug companies to further boost the drug, he argues, as it could possibly put them out of business by stopping them from selling their more expensive brands.
So what is the solution to a lack of commercial interest in further exploring the therapeutic benefits of aspirin? More public money going into clinical trials, says Jeffreys. ’If I were the Department of Health, I would say "this is a very inexpensive drug. There may be a lot of other things we could do with it." We should put a lot more money into trying to find out.’
Jeffreys’ book — which not only tells the tale of a ’wonder drug’ but also explores the nature of innovation and the role of big business, public money and regulation — reminds us why such research is so important.
Questions 27-32
Complete each sentence with the correct ending A-H from the box below.
Write the correct letter A-H in boxes 27-32 on your answer sheet.
A the discovery of new medical applications.
B the negative effects of publicity.
C the large pharmaceutical companies.
D the industrial revolution.
E the medical uses of a particular tree.
F the limited availability of new drugs.
G the chemical found in the willow tree.
H commercial advertising campaigns.
Aspirin might have become unavailable without
选项
答案
A
解析
Paragraph 5: ... discoveries were made regarding the beneficial role of aspirin in preventing heart attacks, strokes and other afflictions.
转载请注明原文地址:https://jikaoti.com/ti/BfEYFFFM
本试题收录于:
雅思阅读题库雅思(IELTS)分类
0
雅思阅读
雅思(IELTS)
相关试题推荐
Berniehasalreadyread1/5ofhisbiologyhomeworkonMondaynight.WhatfractionofhisremaininghomeworkwouldBerniehavet
Twopositiveintegersaandbhaveonlyonecommondivisor,ifb/a+2=18/7,thenwhichofthefollowingcouldbethevalueof(a-
Thedistinctionbetweenmakingartandthinkingandwritingaboutitshouldimplyneitheramutualexclusivenessnorahi
Leavingasidethequestionofhowblackholesgeneratetheenergyingamma-raybursts-cosmicexplosionscalledGRBs-their
Leavingasidethequestionofhowblackholesgeneratetheenergyingamma-raybursts-cosmicexplosionscalledGRBs-their
Educatorswhostudytheinfluencesofgeographicaldifferencesoneducationalsuccesshaveconcludedthatenvironmentisnot___
Despiteherrelaxedandflexiblestyle,Ms.delaFressangeis______businesswomanwhoknowshowtomarketherbrand:herself.A
Despitethe(i)______ofpopularinterestinrainforestsandmedicinalplants,thereisa(ii)______easy-to-usefieldguides.
Hefeltitwouldbe(i)______,inviewoftheintense(ii)______thatwouldlikelyfollow,tomakethesacrificerequiredinord
Estimatingtherisksofradiationescapingfromanuclearpowerplantis______question,butonewhoseanswerthenbecomespart
随机试题
在窗体中添加一个名称为Commandl的命令按钮,然后编写如下程序:PrivateSubf(ByValXAsInteger)x=x+4EndSubPrivateSubCommandl_Click()
清管段描述首先是其使用年限、规格、()度以及穿跨越等情况。
下列哪些情形不适用教唆犯的规定?
某35/10kV变电所,其lOkV母线短路容量为78MV.A(基准容量100MV.A),10kV计算负荷有功功率6000kW,自然功率因数0.75,请回答下列问题:该变电所10kV侧有一路长度为5km的LGJ一120架空供电线路,该线路的计算有功功率为
直接标价法下1美元=7元人民币,1英镑=2美元,则相对中国人而言,直接标价法下人民币元与英镑的汇率为()。
蛋白质表观消化率(%)=(I-F)/I×100。[江苏省2011年四级真题]
全国水资源一级分区主要湿地面积比例最大的河流是:
2012—2016年,S省城镇化水平快速提高。2016年年末,S省常住人口3681.61万人,其中居住在城镇区域的常住人口2069.63万人,较2015年年末增加.53.26万人;城镇化率达56.21%,居全国第16位,比2015年提高1.18个百分点。
Atwhattimedoesthebankopen?
中国希望通过该宣传片提升国家形象,展现一个繁荣发展、民主进步的中国。
最新回复
(
0
)