首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex. (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex. (Ⅰ)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
admin
2019-03-19
87
问题
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2e
x
.
(Ⅰ)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
(一t
2
)出的拐点.
选项
答案
(Ⅰ)联立 [*] 得f’(x)一3f(x)=一2e
x
,因此 f(x)=e
∫3dx
(j(一2e
x
)e
-∫3dx
dx+C)=e
x
+Ce
3x
代入f’’(x)+f(x)=2e
x
,得C=0,所以 f(x)=e
x
. (Ⅱ)y=f(x
2
)∫
0
x
f(一t
2
)dt=e
x
2
∫
0
x
e
-t
2
dt y’=2xe
x
2
∫
0
x
e
-t
2
dt+1 y’’=2x+2(1+2x
2
)e
x
2
∫
0
x
e
-t
2
dt 当x<0时,y’’<0;当x>0时,y’’>0,又y(0)=0,所以曲线的拐点为(0,0).
解析
转载请注明原文地址:https://jikaoti.com/ti/AuBRFFFM
0
考研数学三
相关试题推荐
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。(Ⅰ)证明xn存在,并求该极限;(Ⅱ)计算
设a是常数,则级数
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,(Ⅰ)β可由α1,α2,α3线性表出,且表示唯一;(Ⅱ)β不可由α1,α2,α3线性表出;(Ⅲ)β可由α1,
设an=2,an+1=(n=1,2,…).证明:(1)an存在;(2)级数收敛.
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
袋中有a个白球与b个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0,试证:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
随机试题
蒲松龄《狼》原文一屠晚归,担中肉尽,止有剩骨。途中两狼,缀行甚远。屠惧,投以骨。一狼得骨止,一狼仍从。复投之,后狼止而前狼又至。骨已尽矣,而两狼之并驱如故。屠大窘,恐前后受其敌。顾野有麦场,场主积薪其中,苫蔽成丘。屠乃奔倚其下,弛担持
矿产资源开发完毕后,还要组织好矿地的()。
下列符合解除合同的条件的是()。
全日制本专科生每人每年申请国家助学贷款的贷款额度不超过()元的标准。
“任务分工的层次、细致程度”描述的是组织结构中的()。
Hehasbeenstudyinghereforthreeyears,bynextsummerhe.
旅行社作为许可经营企业,其许可主体是旅游主管部门,依据()原则进行管理。
“六部委”联合开展环保专项______行动,要求建立各级政府负责的环保工作责任制,对工作不力的部门要通报批评,责令限期______。填入横线处最恰当的一组是()。
Oneofthemostcriticalproblems【C1】_____blackandotherminorityAmericanstodayisthedifficultyofentering【C2】_____socie
TherearemanysuperstitionsinBritain,butoneofthemost【C1】______heldisthatitisunluckytowalkunderaladder—eveni
最新回复
(
0
)