首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
admin
2016-10-23
83
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
…+(n一1)α
n一1
=0,b=α
1
+α
2
+…+α
n
.
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n一1) α
n一1
=0,所以α
1
+2α
2
+…+(n一1) α
n一1
+ 0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n一1,0)
T
,又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
解析
转载请注明原文地址:https://jikaoti.com/ti/A7xRFFFM
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max{x,y}≤1}=________.
随机试题
马克思认为,人的本质在其现实性上是()
标志中国半殖民地半封建社会基本形成的不平等条约是
(此规定不适用于你),youareunder18.
急性化脓性阑尾炎,主要的病理改变是指()
A.进食呛咳B.进食停滞感C.持续胸背痛D.进行性吞咽困难E.声音嘶哑说明食管外组织已受侵犯
电缆敷设要点包括( )。
甲手机专卖店门口立有一块木板,上书“假一罚十”四个醒目大字。乙从该店购买了一部手机,后经有关部门鉴定,该手机属于假冒产品,乙遂要求甲履行其“假一罚十”的承诺。关于本案,下列哪一选项是正确的?()
中国共产党成立后中国革命的面貌焕然一新。“新”主要体现在()①以马克思主义为指导思想②以武装斗争为主要手段③以无产阶级为革命领导④提出民主革命的前途是社会主义
学校教育给我们的好处不但只是灌输知识,最大的好处恐怕还在给我们求友的机会上。这好处我到了离学校以后才知道,这几年来更确切地体会到,深悔当时毫不自觉,马马虎虎过去了。近来每日早晚在路上见到两两三三的携着书包,携了手或挽了肩膀走着的青年学生,我总艳羡他们有朋友
Womendonot______incrimetothesameextentasmen.
最新回复
(
0
)