设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.

admin2017-02-28  32

问题 设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.

选项

答案因为f(x)在[0,1]上连续,所以f(x)在[0,1]上取到最小值和最大值,又因为f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1,所以存在c∈(0,1),使得f(C)=一1,f’(C)=0,由泰勒公式得[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/9xSRFFFM
0

最新回复(0)