求函数z=exy.sin(x+y)的全微分.

admin2017-04-25  21

问题 求函数z=exy.sin(x+y)的全微分.

选项

答案因z=exysin(x+y),于是 dz=d[exysin(x+y)]=d(exy).sin(x+y)+eexyd[sin(x+y)] =exy.(ydx+xdy).sin(x+y)+exy.cos(x+y)(dx+dy) =exy{[ysin(x+y)+cos(x+y)]dx+[xsin(x+y)+cos(x+y)]dy}

解析
转载请注明原文地址:https://jikaoti.com/ti/9dOGFFFM
本试题收录于: 数学题库普高专升本分类
0

最新回复(0)