在第一象限内的曲线y=上求一点M0(x0,y0),使过该点的切线被两坐标轴所截线段的长度为最短。

admin2018-11-15  54

问题 在第一象限内的曲线y=上求一点M0(x0,y0),使过该点的切线被两坐标轴所截线段的长度为最短。

选项

答案如图所示,因为y=[*],所以切线方程为y-y0=[*](x-x0),设切线与两坐标轴的交点分别为(a,0)(0,b),由切线方程可得 [*] 所截线段长度的平方为L=l2=a2+b2=[*],上式两边对x0求导得[*]。 令L=0,得[*]。 由于只有唯一的驻点,所以x0=[*]必为所求,所以点M
解析
转载请注明原文地址:https://jikaoti.com/ti/9dGGFFFM
0

最新回复(0)