设b>a≥0,f(x)在[a,b]上连续,在(a,b)内可导,f(a)≠f(b),求证:存在ξ,η∈(a,b)使得f’(ξ)=f’(η).

admin2019-01-23  20

问题 设b>a≥0,f(x)在[a,b]上连续,在(a,b)内可导,f(a)≠f(b),求证:存在ξ,η∈(a,b)使得f’(ξ)=f’(η).

选项

答案因为f(x)在[a,b]上满足拉格朗日中值定理条件,故至少存在ξ∈(a,b),使 [*] 令g(x)=x2,由柯西中值定理知,ヨ∈η(a,b),使 [*] 将②式入①式,即得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/9c1RFFFM
0

最新回复(0)