首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
admin
2019-05-15
29
问题
α
1
,α
2
,α
3
,β线性无关,而α
1
,α
2
,α
3
,γ线性相关,则
选项
A、α
1
,α
2
,α
3
,cβ+γ线性相关.
B、α
1
,α
2
,α
3
,cβ+γ线性无关.
C、α
1
,α
2
,α
3
,β+cγ线性相关.
D、α
1
,α
2
,α
3
,β+cγ线性无关.
答案
D
解析
由于α
1
,α
2
,α
3
,β线性无关,α
1
,α
2
,α
3
是线性无关的.
于是根据定理α
1
,α
2
,α
3
,cβ+γ(或β+cγ)线性相关与否取决于cβ+γ(或β+cγ)可否用α
1
,α
2
,α
3
线性表示.
条件说明β不能由α
1
,α
2
,α
3
线性表示,而γ可用α
1
,α
2
,α
3
线性表示.
cβ+γ可否用α
1
,α
2
,α
3
线性表示取决于c,当c=0时cβ+γ=γ可用α
1
,α
2
,α
3
线性表示;c≠0时cβ+γ不可用α
1
,α
2
,α
3
线性表示.c不确定,选项A、B都不能选.
而β+cγ总是不可用α
1
,α
2
,α
3
线性表示的,因此选项C不对,选项D对.
转载请注明原文地址:https://jikaoti.com/ti/9MoRFFFM
0
考研数学一
相关试题推荐
求方程y"+2my’+n2y=0的通解;又设y=y(x)是满足y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
求Pdx+Qdy在指定区域D上的原函数,其中{P,Q}={1-},D={(x,y)|x>0}.
求下列空间中的曲线积分I=∫Г(x2-yz)dx+(y2-xz)dy+(z2-xy)dz,其中f是沿螺旋线x=acosθ,y=asinθ,z=h/2πθ.从A(a,0,0)到B(a,0,h)的有向曲线.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:ヨξ∈(a,b)使得f(b)-2f()+f(a)=1/4(b-a)2f"(ξ).
求函数y=的单调区间,极值点,凹凸性区间与拐点.
设随机变量X的分布函数F(x)=则P{X=1}=
(2013年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:存在η∈(一1,1),使得f"(η)+f’(η)=1.
(2016年)设有界区域Ω由平面2x+y+2z=2与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分
(2005年)设有三元方程xy一zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程
设f(x,y)在(x0,y0)邻域存在偏导数且偏导数在点(x0,y0)处不连续,则下列结论中正确的是
随机试题
Atelevisioncameradoesnotlookatasceneasawholeinthesameway______afilmcamera(does);instead,itscansthescene.
考虑其可能存在的休克为( )经保守治疗,病人中心静脉压1.96kPa(20cmH2O),血压60/40mmHg,尿量30ml/h,考虑原因为( )
A.25~30sB.35~40sC.60~80sD.65~75sE.3~5min胰腺增强扫描静脉期扫描延迟时间为
A、溶菌酶含片B、西地碘含片C、硝酸银溶液D、氯己定含漱剂E、地塞米松粘贴片具有抗菌抗病毒、消肿止血作用的是()。
项目竣工验收投入运营后到评价时点建设项目生产、运营、销售和赢利情况主要是指()。
下列选项中,关于价值链分析描述错误的是()。
送客服务中,若系乘飞机离境的旅游团,地陪应提醒或协助领队提前()小时确认机票。
下列关于河外星系的说法正确的是()。
求一曲线,使曲线的切线、坐标轴与切点的纵坐标所围成的梯形面积等于a2,且曲线过(a,a)点.
A、Thecostofmakingpaper.B、Largemachinesandpaper-making.C、Thedevelopmentofpaper-making.D、Howtomakepaperbyhandto
最新回复
(
0
)