已知函数f(x)在区间(1—δ,1+δ)内具有二阶导数,f"(x)

admin2013-07-05  58

问题 已知函数f(x)在区间(1—δ,1+δ)内具有二阶导数,f"(x)<0,且f(1)=f(1)=1,则(    ).

选项 A、在(1—δ,1)和(1,1+δ)内均有f(x)B、在(1一δ,1)和(1,1+δ)内均有f(x)>x
C、在(1—δ,1)内f(x)x
D、在(1—δ,1)内f(x)>x,在(1,1+δ)内f(x)

答案A

解析 设φ(x)=f(x)一x,则φ(x)=f(x)-f,φ"(x)=f"(x),由f"(x)<0得φ"(x)<0.故φ(x)单调减少,则当x<1时,φ(x)>f(1)=f(1)一1=0,当x>l,时φ(x)<φ(1)=0.则φ(x)在x=1处取得极大值,当x∈(1—δ,1)U(1,1+δ)时φ(x)<φ(1)=f(1)一1=0,即f(x)
转载请注明原文地址:https://jikaoti.com/ti/8RmRFFFM
0

相关试题推荐
最新回复(0)