首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Directions: In this part, you will have 15 minutes to go over the passage quickly and answer the questions on Answer Sheet 1. Fo
Directions: In this part, you will have 15 minutes to go over the passage quickly and answer the questions on Answer Sheet 1. Fo
admin
2012-12-13
37
问题
Directions: In this part, you will have 15 minutes to go over the passage quickly and answer the questions on Answer Sheet 1.
For questions 1-4, mark
Y (for YES) if the statement agrees with the information given in the passage;
N (for NO) if the statement contradicts the information given in the passage;
NG (for NOT GIVEN) if the information is not given in the passage.
For questions 5-10, complete the sentences with the information given in the passage.
Earth’s Beginnings: The Origins of Life
Earth is the only planet we know of that can support life. This is an amazing fact considering that it is made out of the same matter as other planets in our solar system, was formed at the same time and through the same processes as every other planet, and gets its energy from the sun.
To a universal traveler, Earth may seem to be a harmless little planet in the far reaches of one of billions of spiral galaxies in the universe. It has an average size star of average brightness and is joined by eight other planets—which support no known life forms—in its solar system.
However, Earth is a planet teeming with vitality and is home to billions of plants and animals that share a common evolutionary track. How and why did we get here? What processes had to take place for this to happen? And where do we go from here? The fact is, no one has been able to come close to knowing exactly what led to the origins of life, and we may never know. After 4.5 billion years of Earth’s formation and evolution, the evidence may have been lost. But scientists have made significant progress in understanding what chemical processes that may have led to the origins of life.
There are many theories, but most have the same general perspective of how things came to be the way they are. Following is an account of life’s beginnings based on some of the leading research and theories related to the subject, and of course, fossil records dating back as far as 3.5 billion years ago.
Earth’s Beginnings
Earth began to form over 4.5 billion years ago from the same cloud of gas (mostly hydrogen and helium) and interstellar dust that formed our sun, the rest of the solar system and even our galaxy. In fact, Earth is still forming and cooling from the galactic implosion that created the other stars and planetary systems in our galaxy, a process which began about 16 billion years ago as the Milky Way began to form.
As our solar system began to come together some 6—7 billion years ago, the sun formed within a cloud of dust and gas that continued to shrink upon itself by its own gravitational forces. This caused it to undergo the fusion process and give off light, heat and other radiation. During this process, the remaining clouds of gas and dust that surrounded the sun began to form into smaller lumps called planetesimals, which eventually formed into the planets we know today.
The Earth went through a period of catastrophic and intense formation during its earliest beginnings about 4.5—4.6 billion years ago. By 3.8 to 4.1 billion years ago, Earth had become a planet with an atmosphere (not like our atmosphere today!) and an ocean. This period of time of Earth’s formation is referred to as the pre-Cambrian Period. The pre-Cambrian is divided into three parts: the Hadean, Archean and Proterozoic Periods.
Pre-Cambrian Period
The Earth formed under so much heat and pressure that it formed as a molten planet. For nearly the first billion years of its formation—called the Hadean Period (or "hellish" period)—Earth was bombarded continuously by the remnants of the dust and debris—like asteroids, meteors and comets—until it formed into a solid sphere, fell into an orbit around the sun, and began to cool down.
As Earth began to take solid form, it had no free oxygen in its atmosphere. It was so hot that the water droplets in its atmosphere could not settle to form surface water or ice. Its atmosphere was also so poisonous that nothing would have been able to survive.
Earth’s atmosphere was formed mostly from the outgassing of such volatile compounds as water vapor, carbon monoxide, methane, ammonia, nitrogen, carbon dioxide, hydrochloric acid and sulfur produced by the constant volcanic eruptions that besieged the Earth. It had no flee oxygen.
About 4.1 billion years ago, the Earth’s surface—or crust—began to cool and stabilize, creating the solid surface with its rocky terrain. Clouds formed as the Earth began to cool, producing enormous volumes of rain water that formed the oceans. For the next 1.3 billion years (3.8 to 2.5 billion years ago), called the Archean Period, first life began to appear (at least as far as our fossil records tell us... there may have been life before this!) and the world’s land masses began to form. Earth’s initial life forms were bacteria which could survive in the highly toxic atmosphere that existed during this time. In fact, all life was bacteria during the Archean Period.
Toward the end of the Archean Period and at the beginning of the Proterozoic Period, about 2.5 billion years ago, oxygen-forming photosynthesis began to occur. The first fossils, in fact, were a type of blue-green algae that could photosynthesize.
Some of the most exciting events in Earth’s history and life occurred during this time which spanned about two billion years until about 550 million years ago. The continents began to form and stabilize, creating the supercontinent Rodinia about 1.1 billion years ago. (Rodinia is widely accepted as the first supercontinent, but there were probably others before it.) Although Rodinia is composed of some of the same land fragments as the more popular supercontinent, Pangea, they are two different supercontinents. Pangea formed some 225 million years ago and would evolve into the seven continents we know today.
Free oxygen began to build up around the middle of the Proterozoic Period—around 1.8 billion years ago—and made way for the emergence of life as we know it today. This event, of course, created conditions that would not allow most of the existing life to survive and thus made way for the more oxygen dependent life forms.
By the end of the Proterozoic Period, Earth was well along in its evolutionary processes leading to our current period, the Holocene Period, also known as the Age of Man. Thus, about 550 million years ago, the Cambrian Period began. During this period, life "exploded," developing almost all of the major groups of plants and animals in a relatively short time. It ended with the massive extinction of most of the existing species about 500 million years ago, making room for the future appearance and evolution of new plant and animal species.
And then, about 498 million years later—2.2 million years ago—the first modem human species emerged.
When Earth began to take solid form, there was no water or ice on its surface because ______.
选项
答案
it was very hot
解析
转载请注明原文地址:https://jikaoti.com/ti/6ekFFFFM
0
大学英语六级
相关试题推荐
Weoftenhearyoungpeople’scomplaintsoftheirdifficultiesto______theircareerambitionswiththeneedofthereality.
Itwasno______thathiscarwasseennearthebankatthetimeoftherobbery.
Duringthewartime,anyonewho______withenemiesmightbesentencedtobeshot.
Hesat______hishead,tryingtothinkoftheanswer.
Theinfectiousdiseaseposedathreattothehealthofthelocalcitizensandthewholeareashouldbe__________.
Studentscanbeexpelledforrefusingto______toschoolrules.
A、Itwillestablishadatabaseforher.B、Itwillhelpherfindaninternship.C、Itwillhelpherfindajobwhenshegraduates.
Anepidemicofswineflu(猪流感)hasrecentlydevelopedinMexicoandtheUnitedStates,saystheCDC.Swinefluhaskilledmanyp
A、Inteachers’specialroom.B、Instudents’readingroom.C、Inmodernbookroom.D、Inthereserveroom.D事实细节题。对话中男士将书目递给女士,女士看后
HowGeniusesWorkIn1905,AlbertEinsteindevelopedthetheoryofspecialrelativity.Healsoprovedthatatomsexistandf
随机试题
将“报告”与“请示”分开的规定,始见于()
改良乳癌根治术后预防皮下积液及皮瓣坏死的主要措施为()
社区护士指导社区内有乳腺癌家族史的40岁以上女性进行乳房自检,这是
初产妇,孕39周,宫口开全2小时,频频用力,未见胎头拨露。检查:宫底部为臀,腹部前方可触及胎儿小部分,未触及胎头。肛查:胎头已达棘下2cm,矢状缝与骨盆前后径一致,大囟门在前方,诊断为下列何种情况
A.可致严重低血压B.可见面部潮红、出汗、胸闷、血压下降,甚至虚脱等C.可引起心动过缓D.有引起心室颤动和心跳骤停的可能E.可引起呼吸抑制,并可导致房室传导阻滞、心室颤动,甚至死亡两性霉素B静滴速度过快()
室内排水管道的检验试验应包括()等试验。
甲公司2013年实现税后利润1000万元,2013年年初未分配利润为200万元,公司按10%提取法定盈余,公积预计2014年需要新增投资资本500万元,目标资本结构(债务/权益)为4/6,公司执行剩余股利分配政策,2013年可分配现金股利()万元
地陪送行前的业务准备,主要有()
根据下表,回答以下问题关于2013年4月该市广播影视情况,能够从资料中推出的是()。
(1)在考生文件夹下有一个工程文件sjt3.vbp,相应的窗体文件为sjt3.tim,包含了所有控件和部分程序,如图3—109所示。要求如下:①利用属性窗口向列表框添加四个项目:VisualBasic、TurboC、C++、Java。
最新回复
(
0
)