首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=,α2=,α3=,则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是( )
设α1=,α2=,α3=,则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是( )
admin
2018-11-22
24
问题
设α
1
=
,α
2
=
,α
3
=
,则3条直线a
1
x+b
1
y+c
1
=0,a
2
x+b
2
y+c
2
=0,a
3
x+b
3
y+c
3
=0(其中a
i
2
+b
i
2
≠0,i=1,2,3)交于一点的充要条件是( )
选项
A、α
1
,α
2
,α
3
线性相关。
B、α
1
,α
2
,α
3
线性无关。
C、R(α
1
,α
2
,α
3
)=R(α
1
,α
2
)。
D、α
1
,α
2
,α
3
线性相关,α
1
,α
2
线性无关。
答案
D
解析
(A)α
1
,α
2
,α
3
线性相关,当α
1
=α
2
=α
3
时,方程组Ax=b的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则方程组有无穷多解,根据解的个数和直线的位置关系可得3条直线重合,(A)不成立。
(B)α
1
,α
2
,α
3
线性无关,α
3
不能由α
1
,α
2
线性表出,方程组Ax=b的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解的个数与直线的位置关系得出3条直线无公共交点,(B)不成立。
(C)R(α
1
,α
2
,α
3
)=R(α
1
,α
2
),当R(α
1
,α
2
,α
3
)=R(α
1
,α
2
)=1时,3条直线重合,故(C)不成立。
由排除法可知,应选(D)。
转载请注明原文地址:https://jikaoti.com/ti/3v1RFFFM
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)=2x12+ax22+2x32+2x1x2-2bx1x3+x2x3经过正交变换化为3y12+3y22。求正交变换x=Qy,使二次型化为标准形。
将函数f(x)=1-x2(0≤x≤π)用余弦级数展开,并求的和。
设y1=ex/2+e-x+ex,y2=2e-x+ex,y3=ex/2+ex是某二阶常系数非齐次线性微分方程的解,则该方程的通解是()
设薄片型物体S是圆锥面Z=被柱面Z2=2x割下的有限部分,其上任一点的密度为μ(x,y,z)=9,记圆锥与柱面分交线为C.求C在xOy平面上的投影曲线的方程;
点M(2,1,—1)到直线L:的距离为().
设A为m×n矩阵,且r(A)=.(Ⅰ)证明方程组AX=b有且仅有n一r+1个线性无关解;(Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
点(1,2,3)到直线的距离为_________
设y=f(x)可导,且y’≠0.(I)若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式;(Ⅱ)若又设y=f(x)二阶可导,则
随机试题
论述党在新时代的强军目标。
患者女性,23岁。未孕,月经规律,曾有盆腔炎史,现停经34天,阴道出血淋漓7天,下腹痛3小时就诊。应与下列哪些疾病鉴别(提示:B超示附件区包块直径约8.0cm,盆腔液性暗区4.0cm。)
患者,女,45岁。口服农药30ml后,恶心、呕吐,小便失禁,流涎,走路摇晃,视物模糊,呼吸困难,呼气呈大蒜味。可判断病情的特异性实验指标
下列在制定调查表时,哪项是错误的
两根等长等径的管道,绝对粗糙度相同,分别输送不同的流体,如果雷诺数相同,则两管的( )相等。
可再生资源包括()。
下列事项中,不属于行政诉讼受理范围的是:
根据马克思主义法学的观点,法的起源是由多种因素共同作用引起的,这些因素有
4.In1861,itseemedinevitablethattheSouthernstateswouldbreakawayfromtheUnion.
Theygotoseethemovie______theyreallylikeit.
最新回复
(
0
)