正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.

admin2021-01-25  49

问题
正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.

选项

答案由题设,ξ=(1,2,1)T为A的一个特征向量,于是有Aξ=λ1ξ,即 [*] 解得λ1=2,a=-1.所以 [*] 由A的特征方程 [*] =(λ-2)(λ-5)(λ+4)=0, 得A的特征值为2,5,-4. 对于特征值5,求齐次线性方程组(5I-A)x=0的基础解系,由 [*] 得通解x1=x3,x2=-x3(x3任意).令x3=1,得基础解系为(1,-1,1)T,将其单位化,得属于特征值5的一个单位特征向量为[*](1,-1,1)T. 同理可求得属于特征值-4的一个单位特征向量为[*](-1,0,1)T. [*] 故Q为所求的正交矩阵.

解析
转载请注明原文地址:https://jikaoti.com/ti/3caRFFFM
0

最新回复(0)