首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
admin
2017-01-21
31
问题
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=0,求线性方程组Ax=0的通解。
选项
答案
由AB=0知,B的每一列均是Ax=0的解,且r(A)+r(B)≤3。 (1)若k≠9,则r(B)=2,于是r(A)≤1,显然r(A)≥1,故r(A)=1。可见此时Ax=0的基础解系所含解向量的个数为3–r(A)=2,矩阵B的第一列、第三列线性无关,可作为其基础解系,故Ax=0的通解为:x=k
1
(1,2,3)
T
+k
2
(3,6,3)
T
,k
1
,k
2
为任意常数。 (2)若k=9,则r(B)=1,从而1≤r(A)≤2。 ①若r(A)=2,则Ax=0的通解为:x=k.(1,2,3)
T
,k
1
为任意常数。 ②若r(A)=1,则Ax=0的同解方程组为:ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为 [*]k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/3HSRFFFM
0
考研数学三
相关试题推荐
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设函数D={(x.y)丨x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,求
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
设A是m×n阶矩阵,下列命题正确的是().
随机试题
下列的图表显示了从1975年到2000年澳大利亚青少年对于快餐消费的数额与类型的变化。通过选择比较数据和报道其主要特征,以FastFoodConsumedbyTeenagersinAustralia为题,写一篇150词左右的,能够总结图表信息的
某男,66岁。临床诊断低渗性缺水,临床表现正确的是
承包商应按照合同“承包商文件”中所述的对承包商文件的送审程序,()每件样品应标明其原产地以及在工程中预期的用处。
下列与现金差别不大,可以视为短期投资的有()。
根据价值工程原理,改进型提高价值的途径是在产品成本不变的条件下,通过()达到提高产品价值的目的。
与短期银行借款方式相比,企业发行短期融资券筹资的优点有()。
在资产评估中恰当选择评估基准日,充分体现了资产评估中的()原则。
知识营销是通过有效的知识传播方法和途径,将企业所拥有的对用户有价值的知识(包括产品知识、专业研究成果、经营理念、管理思想以及优秀的企业文化等)传递给潜在用户,并逐渐形成对企业品牌和产品的认知,为将潜在用户最终转化为用户的过程和各种营销行为。下列行为属于知识
Mr.Karlmadehis______inthebusinessworldentirelyonhisown.
Theterm"Americandream"wasfirstusedin【B1】______inanovelwrittenbyHoratioAlger:RaggedDick.Themessagewas:Nomatte
最新回复
(
0
)