首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
admin
2017-06-14
23
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
求A的特征值、特征向量.
选项
答案
将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n-1
,0] [*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)=n-1,所以齐次方程组Ax=0的基础解系仅由 n-(n-1)=1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://jikaoti.com/ti/10wRFFFM
0
考研数学一
相关试题推荐
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
随机试题
Maxhasno______(appreciate)ofthefinethingsinlife.
医学伦理学发展到生命伦理学阶段,其理论基础的核心是()
城市用地分类中的公共设施用地只包括居住区级的行政、经济、文化、教育、卫生、体育及科研设计等机构和设施的用地,不包括居住用地中的公共服务设施用地。()
我国税制对( )规定了免征额。
一般而言,以外币为基准,汇率上升,本币贬值,本国产品竞争力强,企业的股票和债券的价格上涨。()
以下做法违法的有()。
针对个人取得的一项收入,如何区分属于工资薪金还是劳务报酬?
国庆期间,张某花5000元购买即开型福利彩票,其中一张彩票中了特等奖,奖品为价值80万元的宝马轿车一台和奖金20万元。根据个人所得税法律制度的规定,张某本次中奖应纳个人所得税为()万元。
A省甲公司拟于2016年向欧盟出口钨粉80吨。2015年8月6日,甲公司向A省商务厅申请办理钨粉出口许可证,被告知钨产品出口配额由A省人民政府行政许可服务中心集中分配,甲公司于2015年8月13日向行政服务中心报送申请钨粉出口许可证材料。行政许可服务中心人
(2010年真题)简述民事法律行为的有效条件。
最新回复
(
0
)