以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是( )。[2012年真题]

admin2016-06-30  35

问题 以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是(    )。[2012年真题]

选项 A、y’’一2y’一3y=0
B、y’’+2y’一3y=0
C、y’’一3y’+2y=0
D、y’’一2y’一3y=0

答案B

解析 因y1=ex,y2=e-3x是特解,故r1=1,r2=一3是特征方程的根,因而特征方程为r2+2r一3=0。故二阶线性常系数齐次微分方程是:y’’+2y’一3y=0。
转载请注明原文地址:https://jikaoti.com/ti/0S7hFFFM
0

相关试题推荐
最新回复(0)