首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=a,|B|=b,求|A+B|.
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=a,|B|=b,求|A+B|.
admin
2018-06-27
20
问题
设4阶矩阵A=(α,γ
1
,γ
2
,γ
3
),B=(β,γ
1
,γ
2
,γ
3
),|A|=a,|B|=b,求|A+B|.
选项
答案
A+B=(α+β,γ
1
+γ
2
,γ
2
+γ
3
,γ
3
+γ
1
), |A+B|=|α+β,γ
1
+γ
2
,γ
2
+γ
3
,γ
3
+γ
1
| =|α+β,2γ
1
+γ
2
+γ
3
,γ
2
+γ
3
,γ
3
+γ
1
|(把第4列加到第2列上) =|α+β,2γ
1
,γ
2
+γ
3
,γ
3
+γ
1
|(第2列减去第3列) =2|α+β,γ
1
,γ
2
+γ
3
|=2|α+β,γ
1
,γ
2
,γ
3
| =2(|α,γ
1
,γ
2
,γ
3
|+|β,γ
1
,γ
2
,γ
3
|) =2(|α,γ
1
,γ
2
,γ
3
|+|β,γ
1
,γ
2
,γ
3
|)=2a+2b. |A+B|=2a+2b.
解析
转载请注明原文地址:https://jikaoti.com/ti/z0dRFFFM
0
考研数学二
相关试题推荐
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
已知:,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极火值还是极小值?说明理由.
设证明:f(x,y)在点(0,0)处不可微.
设证明:f(x,y)在点(0,0)处的两个偏导数fx’(0,0)与fy’(0,0)都存在,函数f(x,y)在点(0,0)处也连续;
设f(x)在x=x0的某邻域内有定义,则存在且等于A”是“f’(x0)存在且等于A”的()
设f(x)满足求y=f(x)的渐近线方程.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
已知高温物体置于低温介质中,任一时刻该物体温度对时间的变化率与该时刻物体和介质的温差成正比.现将一初始温度为120℃的物体在20℃恒温介质中冷却,30min后该物体温度降至30℃,若要将该物体的温度继续降至21℃,还需冷却多长时间?
(2004年)把χ→0+时的无穷小量α=∫0χcost2dt,β=,γ=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是【】
随机试题
工程勘察设计业务的委托可以通过()的方式进行。
接天莲叶无穷碧,________________。(宋·杨万里《晓出净慈寺送林子方》)
关于肾上腺素在眼科局部麻醉中作用的描述,错误的是
A.面部白色B.面部黄色C.面部赤色D.面部青色E.面部黑色主虚寒证、失血证的为()。
A,反跳现象B,停药后综合征C,类皮质醇增多症D,类固醇性糖尿病E,医源性肾上腺皮质功能不全主要症状为满月脸、向心性肥胖、皮肤紫纹、多毛等的是
因旅行社过错造成旅游者误机(车、船),旅行社应赔偿旅游者的( ),并赔偿经济损失10%的违约金。
诚然,西方是人类很多文明成就的展示台,有一些价值观是人类壮举的注脚,如对科学实验的信仰,向假说挑战的意志。但对实践这些价值的迷信会导致一种特有的盲目:无法理解某些夹杂在其中的价值可能是有害的。但要看清这一点,人们必须站在西方之外,所谓“当局者迷,旁观者清”
将容量为n的样本中的数据分成6组,绘制频率分布直方图。若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n=___________。
Lastnight,Marksaidthathe______thebookbytheendofnextweek.
Thepredictabilityofourmortalityratesissomethingthathaslongpuzzledsocialscientists.Afterall,thereisnonaturalr
最新回复
(
0
)