设L是从点(0,0)到点(2,0)的有向弧段y=x(2-x),则∫L(yex-ey+y)dx+(xe-y+ex)dy=_______.

admin2018-07-22  26

问题 设L是从点(0,0)到点(2,0)的有向弧段y=x(2-x),则∫L(yex-ey+y)dx+(xe-y+ex)dy=_______.

选项

答案-2/3

解析 P(x,y)=yex-e-y+y,Q(x,y)=xe-y+ex

令L0:y=0(起点x=2,终点x=0),
则∫L(yex-e-y+y)dx+(xe-y+ex)dy=()(yex-e-y+y)dx+(xe-y+ex)dy,
而∫(yex-e-y+y)dx+(xe-y+ex)dy
=dxdy=∫02dx∫0x(2-x)dy=∫02x(2-x)dx=4/3,
(yex-e-y+y)dx+(xe-y+ex)dy=∫20=dx=2,
于是∫L(yex-e-y+y)dx+(xe-y+ex)dy=-2=-2/3.
转载请注明原文地址:https://jikaoti.com/ti/uE2RFFFM
0

最新回复(0)