设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明:r=n; (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.

admin2021-11-26  0

问题 设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
(1)证明:r=n;
(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.

选项

答案(1)因为n=r(CA+DB)=[*] (2)因为[*]只有零解,从而方程组AX=0与BX=0没有非零的公共解,故ξ1,ξ2,…,ξr与η1,η2,…,ηs线性无关.

解析
转载请注明原文地址:https://jikaoti.com/ti/tD3RFFFM
0

最新回复(0)