首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
上半平面有一条凹曲线y=y(x),当x≠1时,y’(x)≠0,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数,其中Q是法线与x轴的交点,且曲线在点(1,1)处的切线与x轴平行,求y(x)的表达式.
上半平面有一条凹曲线y=y(x),当x≠1时,y’(x)≠0,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数,其中Q是法线与x轴的交点,且曲线在点(1,1)处的切线与x轴平行,求y(x)的表达式.
admin
2021-04-07
26
问题
上半平面有一条凹曲线y=y(x),当x≠1时,y’(x)≠0,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数,其中Q是法线与x轴的交点,且曲线在点(1,1)处的切线与x轴平行,求y(x)的表达式.
选项
答案
曲线y=y(x)在点P(x,y)处的法线方程为 [*] 令Y=0,得X=x+yy’,即它与x轴的交点是Q(x+yy’,0),从而法线段PQ的长度是 [*] 于是[*] 即 yy"=1+(y’)
2
, (*) 令y’=p,y"=[*],代入*式,得y[*]=1+p
2
,即[*],得1/2×ln(1+p
2
)=ln∣y∣+lnC
1
, 即C
1
∣y∣=[*],由x=1时,y=1,p=0,得C
1
=1,故 ∣y∣=[*] 代入dy/dx=p,得dy/dx=±[*],即 [*] 得ln(y+[*])=±x+C
2
,由x=1,y=1,得C
2
=±(x-1), 因此,所求曲线方程为 [*] 即有(无论上式中取“+”号还是“-”号) y=[e
x-1
+e
-(x-1)
]/2
解析
转载请注明原文地址:https://jikaoti.com/ti/svlRFFFM
0
考研数学二
相关试题推荐
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P一1AP=__________.
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________。
设N维向量α=(A,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E—ααT,,其中A的逆矩阵为B,则a=______.
设三元二次型x12+x22+5x32+2tx1x2-2x1x3+4x2x3是正定二次型,则t∈______.
若曲线y=x3+ax2+bx+1有拐点(一1,0),则b=___________.
曲线y=lnx上与直线x+y=1垂直的切线方程为_______.
曲线y2=2x在任意点处的曲率为_________.
设f(x)二阶连续可导,且=______
若函数z=2x2+2y2+3xy+ax+by+c在点(一2,3)处取得极小值一3,则常数a,b,c之积abc=______________.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
随机试题
下列句子中,属于双宾句的有()。
紫菜是常用的食用菌类蔬菜。()
李女士,34岁,孕3产0,妊娠12周首次来院作产前检查孕妇担心胎儿先天畸形。如果做羊膜腔穿刺术检查的时间是()
有一名蛛网膜下隙出血病人,哪项处置是错误的
羊水栓塞的产妇,表现为大出血,呼吸困难,首先的处理是
中度脱水失水占体重
某个人独资企业,2008年全年销售收入为10000000元,销售成本及期间费用7600000元,其中业务招待费100000元、广告费150000元、业务宣传费80000元,增值税以外的各种税费1500000元,没有其他涉税调整事项。该个人独资企业应缴纳的个
对劳动力参与率的长期变动趋势描述正确的有()。
请选出有语病的一句。( )
WhereHaveAllthePeopleGone?Germansaregettingusedtoanewkindofimmigrant.In1998,apackofwolvescrossedthe
最新回复
(
0
)