首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(92年)设 其中ai≠0,bi≠0(i=1,2,…,n),则矩阵A的秩r(A)=________.
(92年)设 其中ai≠0,bi≠0(i=1,2,…,n),则矩阵A的秩r(A)=________.
admin
2017-04-20
50
问题
(92年)设
其中a
i
≠0,b
i
≠0(i=1,2,…,n),则矩阵A的秩r(A)=________.
选项
答案
1
解析
因为A的第1行非零,又A的第2,3,…,n行都可由A的第1行线性表出,故A的行秩为1,即r(A)=1.
转载请注明原文地址:https://jikaoti.com/ti/r1wRFFFM
0
考研数学一
相关试题推荐
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
求幂级数x2n的收敛域及函数.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,则下列选项正确的是().
判断下列函数的奇偶性(其中a为常数):
设f(x)>0且有连续导数,令(1)确定常数a,使φ(x)在x=0处连续;(2)求φˊ(x);(3)讨论φˊ(x)在x=0处的连续性;(4)证明当x≥0时,φˊ(x)单调增加.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
随机试题
柏拉图的美学思想的哲学基础是()
A.可可豆脂B.液状石蜡C.羊毛脂D.甘油E.凡士林可作为栓剂基质的是
处方包括以下哪几类
下列天窗的采光均匀度最差的是()。
海关监管是指海关运用国家赋予的权力,通过一系列管理制度与管理程序,依法对进出境货物所实施的一种行政管理。
下列各项中,可以作为企业的无形资产核算的有()。
清代中叶,并称长江“三码头”的有()。
贪污罪主体有()。
下列选项中不可提起行政诉讼的是()。
垃圾焚烧发电被列人国家发改委《可再生能源发展“十一五”规划》,有专家认为垃圾焚烧是一种安全环保的垃圾处理方式。以下哪项如果为真,最能削弱上述专家观点?()
最新回复
(
0
)