[2005年] 已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: 存在两个不同的点η∈(0,1),ζ∈(0,1),使得f′(η)f′(ζ)=1.

admin2019-06-09  61

问题 [2005年]  已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:
存在两个不同的点η∈(0,1),ζ∈(0,1),使得f′(η)f′(ζ)=1.

选项

答案由拉格朗日中值定理知,存在η∈(0,ξ),ζ∈(ξ,1),使得 f′(η)=[*] 则f′(η)f′(ζ)=[(1一ξ)/ξ][ξ/(1-ξ)]=1.

解析
转载请注明原文地址:https://jikaoti.com/ti/quLRFFFM
0

最新回复(0)