计算x2dydz+y2dzdx+z2dxdy,其中∑:(x-1)2+(y一1)2+=1(y≥1),取外侧.

admin2018-05-23  44

问题 计算x2dydz+y2dzdx+z2dxdy,其中∑:(x-1)2+(y一1)2=1(y≥1),取外侧.

选项

答案令∑0:y=1(Dxz:(x一1)2+[*]≤1),取左侧, 则原式=[*]x2dydz+y2dzdx+z2dxdy-[*]x2dydz+y2dzdx+z2dxdy=I1-I2, [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/nX2RFFFM
0

最新回复(0)