首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
已知n维向量α1,α2,…,αs线性无关,如果n维向量β不能由α1,α2,…,αs线性表出,而γ可由α1,α2,…,αs线性表出,证明α1,α1+α2,α2+α3,…,αs-1+αs,β+γ线性无关.
admin
2016-11-03
25
问题
已知n维向量α
1
,α
2
,…,α
s
线性无关,如果n维向量β不能由α
1
,α
2
,…,α
s
线性表出,而γ可由α
1
,α
2
,…,α
s
线性表出,证明α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
选项
答案
利用拆项重组法及线性无关的定义证之. 由题设γ可由α
1
,α
2
,…,α
s
线性表出,可设 γ=c
1
α
1
+c
2
α
2
+…+c
s
α
s
, 又令 k
1
α
1
+k
2
(α
1
+α
2
)+…+k
s
(α
s
+α
s-1
)+k(β+γ)=0. 将其拆项重组得到 (k
1
+k
2
+kc
1
)α
1
+(k
2
+k
3
+kc
2
)α
2
+…+(k
s
+kc
s
)α
s
+kβ=0. 因α
1
,α
2
,…,α
s
线性无关,而β不能由α
1
,α
2
,…,α
s
线性表出,故α
1
,α
2
,…,α
s
,β线性无关.因而 k=0, k
1
+k
2
+kc
1
=0, k
2
+k
3
+kc
2
=0, …,k
s
+kc
s
=0, 即 k
1
+k
2
=0,k
2
+k
3
=0,…,k
s-1
+k
s
=0,k
s
=0, 解得 k
1
=k
2
=…=k
s-1
=k
s
=0, 即α
1
,α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,β+γ线性无关.
解析
利用线性无关的定义证之,也可用矩阵表示法证之.
转载请注明原文地址:https://jikaoti.com/ti/mSwRFFFM
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解.设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
随机试题
A公司以30万元的价格向B公司订购一台机床。根据合同约定,A公司应以银行承兑汇票支付价款。2010年3月1日,A公司签发一张以B公司为收款人、金额为30万元的银行承兑汇票(承兑银行已经签章),到期日为2010年9月1日。A公司将该汇票交给采购经理甲,拟南其
外部动机
慢性肾衰竭胃肠道症状产生的原因()
男,48岁,过去有外伤史,2天前突感腰部疼痛,伴有右下肢放射痛。X片显示脊柱强直、向右侧弯,右下肢直腿抬高明显受限,右足背外侧皮肤麻木。试问诊断为
学校作为法人最重要和最应该具备的条件是()。
教学的实质是师生交往、积极互动、共同提高和发展的过程。()
2017年5月12日,科技部联合国土资源部、海洋局,正式印发了《“十三五”海洋领域科技创新专项规划》。该规划明确了“十三五”时期海洋领域科技创新的发展思路是()。
社长、主编和副主编三人轮流主持每周一的编辑部发稿会。某年(非闰年)1月6日的发稿会由社长主持,问当年副主编第12次主持发稿会是在哪一天?
下列关于JDK目录结构的说法,错误的是()。
Этифотографиимне_____какпамятьостарыхдрузьях.
最新回复
(
0
)