设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.

admin2019-07-23  15

问题 设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.

选项

答案01x1f(x)f(y)dy=∫01dy∫0yf(x)f(y)如 (交换积分次序) =∫01dx∫0xf(y)f(x)dy (积分值与积分变量使用的字母无关), 故 ∫01dx∫x1f(x)f(y)dy=[*]∫01dx∫x1f(x)f(y)dy+[*]∫01dx∫x1f(x)f(y)dy =[*]∫01dx∫x1f(x)f(y)dy+[*]∫01dx∫0xf(x)f(y)dy =[*]∫01dx∫01f(x)f(y)dy=[*]∫01f(x)dx∫01f(y)dy=[*]A2

解析
转载请注明原文地址:https://jikaoti.com/ti/jPQRFFFM
0

最新回复(0)