设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2,t∈(0,1),则 (Ⅰ)若f"(x)>0(x∈(a,b)),有 f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2), 特别有 (Ⅱ)若f"(

admin2021-11-09  18

问题 设f(x)在(a,b)二阶可导,x1,x2∈(a,b),x1≠x2t∈(0,1),则
    (Ⅰ)若f"(x)>0(x∈(a,b)),有
    f[tx1+(1-t)x2]<tf(x1)+(1-t)f(x2),   
特别有
    (Ⅱ)若f"(x)<0(x∈(a,b)),有
    f[tx1+(1-t)x2]>tf(x1)+(1-t)f(x2),   
特别有

选项

答案(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).因f"(x)>0(x∈(a,b)) => f(x)在(a,b)为凹的.注意tx1+(1-t)x2∈(a,b) => f(x1)>f[tx1+(1-t)x2]+f’[tx1+(1-t)x2][x1-(tx1+(1-t)x2)] =f[tx1+(1-t)x2]+f’[tx1+(1-t)x2](1-t)(x1-x2), f(x2)>f[tx1+(1-t)x2]+f’[tx1+(1-t)x2][x2-(tx1+(1-t)x2)] =f[tx1+(1-t)x2]-f’[tx1+(1-t)x2]t(x1-x2), 两式分别乘t与(1-t)后相加得 tf(x1)+(1-t)f(x2)>f[tx1+(1-t)x2].

解析
转载请注明原文地址:https://jikaoti.com/ti/iclRFFFM
0

最新回复(0)