首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。 (I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵; (Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。 (I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵; (Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
admin
2019-01-22
29
问题
设二次型为f﹦x
1
2
﹢2x
2
2
﹢6x
3
2
﹢2x
1
x
2
﹢2x
1
x
3
﹢6x
2
x
3
。
(I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵;
(Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦U
T
U。
选项
答案
(I)用配方法将二次型化为标准形 f﹦x
1
2
﹢2x
2
2
﹢6x
3
2
﹢2x
1
x
2
﹢2x
1
x
3
﹢6x
2
x
3
﹦(x
1
﹢x
2
﹢x
3
)
2
﹢x
2
2
﹢5x
3
2
﹢4x
2
x
3
﹦(x
1
﹢x
2
﹢x
3
)
2
﹢(x
2
﹢2x
3
)
2
﹢x
3
2
。 [*] 得f的标准形为f﹦y
1
2
﹢y
2
2
﹢y
3
2
,所用可逆线性变换为x﹦Cy,其中C﹦[*](|C|﹦1≠0)。 (Ⅱ)由(I)得,二次型的标准形为f﹦y
1
2
y
2
2
﹢y
3
2
,其系数全为正,所以二次型正定,即二次型对应的矩阵A为正定矩阵。 方法一:由(I)知 f﹦(x
1
﹢x
2
﹢x
3
)
2
﹢(x
2
﹢2x
3
)
2
﹢x
3
2
[*] 方法二:由题干得,二次型f﹦x
T
Ax对应的矩阵为A﹦[*] 由(I)知,f﹦x
T
Ax﹦y
T
C
T
ACy﹦y
T
y,所以C
T
AC﹦E,A﹦(C
-1
)
T
C
-1
﹦U
T
U,其中U﹦C
-1
。 [*] 本题考查二次型。二次型标准化的方法有:配方法和正交变换法。证明二次型对应的矩阵A正定的方法有:定义、顺序主子式全部大于0、正惯性指数为n、特征值均大于0等。考生可根据对上述知识点的掌握程度选择求解方法。
解析
转载请注明原文地址:https://jikaoti.com/ti/fh1RFFFM
0
考研数学一
相关试题推荐
已知n阶矩阵A满足A3=E.(1)证明A2—2A一3E可逆.(2)证明A2+A+2E可逆.
判断A与B是否合同,其中
随机变量X在上服从均匀分布,令Y=sinX,求随机变量Y的概率密度.
A是m×n矩阵,B都n×m矩阵.AB可逆,则
在下列二元函数中,f’’xy(0,0)≠f’’yx(0,0)的二元函数是
设有平面光滑曲线l:x=x(t),y=y(t),z=0,t∈[α,β],以及空间光滑曲线L:x=x(t),y=y(t),z=f(x(t),y(t)),t∈[α,β],t=α,t=β;分别是起点与终点的参数.(I)试说明l,L及曲面S:z=f(x,y)的关
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n一∞时以(x)为极限的是
求下列平面上曲线积分其中L是椭圆周,取逆时针方向.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.求方程组AX=0的通解;
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分万程是______•
随机试题
下列不属于核心能力企业外扩张战略的是()
Whydowelaugh?Foryearsscientistshaveaskedthemselvesthisquestion.Nootheranimalslaughandsmile,onlyhumanbeings.
小儿虽然处于不断生长发育中,但却呈现其固有的规律,即发育的不平衡性、渐进性和个体性。生长发育的一般规律,正确的是
大黄的主治病证是()巴豆的主治病证是()
关于有限责任公司的股东人数的规定,下列正确的是()。
低热量食物是指含淀粉、糖类等碳水化合物类较少的食物。通过食用、低热量食品,可以有效控制能量的摄入量,避免多余能量在体内以脂肪形式储存下来。如果体重已经较重的人改为食用低热量食品,则可在保持饱腹感的同时达到减肥效果。另外,有许多人认为,低热量食物对糖尿病患者
下列关于局域网设备的描述中,错误的是()。
在数据流图中,○(椭圆)代表( )。
このしなものがほしい人はここに自分のなまえと住所を書きなさい。しなもの
Womenaresometimes(fair)______paideventhoughtheydothesamejobasmen.
最新回复
(
0
)