首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2018-11-23
23
问题
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.
(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0. 设A的对角线元素为λ
1
,λ
1
,…,λ
n
.则AB的(i,j)位元素为λ
i
b
ij
,而BA的(i,j)位元素为λ
j
b
ij
因为AB=BA,得 λ
i
b
ij
=λ
j
b
ij
因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由 (1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j,则 CA的(i,j)位元素为c
ii
AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而 c
11
=c
22
…c
nn
.
解析
转载请注明原文地址:https://jikaoti.com/ti/fH1RFFFM
0
考研数学一
相关试题推荐
设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=________.
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
设A、B均为n阶方阵,且满足AB=A+B,证明A—E可逆,并求(A—E)-1.
行列式的第4行元素的余子式之和的值为_________.
已知a,b,c是单位向量,且满足a+b+c=0,则a.b+b.c+c.a=_____.
求下列向量组的一个极大线性无关组,并用极大线性无关组线性表出该向量组中其它向量:α1=(1,2,3,一4),α2=(2,3,一4,1),α3=(2,一5,8,一3),α4=(5.26,一9,一12),α5=(3,一4,1,2).
(11年)设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
(00年)设两个相互独立的事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=________.
如图1-7-1所示,设函数当f具有连续的一阶偏导数时,进一步再求u’’xx(x,y)和u’’yy(x,y).
随机试题
简析《始得西山宴游记》的思想内容。
A、SmokingandlungCancer.B、Lungcancerandthesexes.C、HowtoquitSmoking.D、Howtopreventlungcancer.A这篇听力文章主要讲了吸烟的男女得肺癌
机体随时发现和清除体内出现的突变细胞的功能称为
革兰染色阳性、呈矛头状成双排列、坦面相对的细菌最可能为
4:3:2含钠液(2/3张)的成分是
ASHRAE62-89R中明确规定,只要室内有(),空气品质就不能满足要求。
承包商的风险不包括( )。
对于工程项目管理而言,风险是指可能出现的()的不确定因素。
DoctorsinBritainarewarningofallobesitytimebomb,whenchildrenwhoarealreadyoverweightgrowup.So,whatshouldwedo
[1998年MBA真题]如果“鱼和熊掌不可兼得”是不可改变的事实,则以下哪项也一定是事实?
最新回复
(
0
)