首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
admin
2016-10-26
28
问题
已知A是2n+1阶正交矩阵,即AA
T
=A
T
A=E,证明:|E—A
2
|=0.
选项
答案
由行列式乘法公式(1.10),得|A|
2
=|A|.|A
T
|=|AA
T
|=|E|=1. (Ⅰ)如|A|=1,那么 |E—A|=|AA
T
—A|=|A(A
T
—E
T
)|=|A|.|A一E|=|-(E一A)| =(一1)
2n+1
|E一A |=-|E一A|, 从而|E—A |=0. (Ⅱ)如|A|=一1,那么可由 |E+A|=|AA
T
+A|=|A(A
T
+E
T
)|=|A|.|A+E|=-|E+A|, 得到|E+A|=0.又因|E一A
2
|=|(E—A)(E+A)|=|E一A|.| E+A|, 所以不论|A|是+1或-1,总有|E一A
2
|=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/eqwRFFFM
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 B
证明下列极限都为0;
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设f(x)是连续函数当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.
判断下列函数的奇偶性(其中a为常数):
随机试题
“人造美女”是最近非常抢眼的一个词。爱美之心人皆有之,丑小鸭变成白天鹅的梦想,通过整形美容手术就可以在短时间内成为现实,对每一位爱美女性来说,都是一种诱惑。目前,整形美容已成为诸多爱美女性增加个人靓丽指数的时尚选择。与此同时,也有许多女性为此付出了惨痛的代
在Word2010中,关于快速表格样式的用法,下列说法正确的是
霍奇金病最常见的首发症状是
有关小儿身长的说法不正确的是
构成调查问卷的主体部分是
能经乳汁排出可能引起婴儿中毒的生产性毒物有
设计概念结构时,通常使用的方法有()。
社会主义市场经济运行的根本目标是实现()。
在考生文件夹下TING文件夹中建立一个名为“CHE”的新文件夹。
CATVisashortwayofsaying"communityantenna(天线)television".But"cabletelevision"isthetermmostpeopleuse.Cabletelev
最新回复
(
0
)