设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为 其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求 By=β的通解.

admin2020-04-30  20

问题 设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为
  
其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求
By=β的通解.

选项

答案由题设知r(A)=2,且α12+2α34=β,α1+2α2+0α34=0,-α123+0α4=0,于是有α123,-α1-2α24,2α1-5α2+0α3=β,可见α1,α2线性无关,于是r(B)=2,且(2,-5,0)T为By=β的特解,又由-α123=0,知(1,-1,-1)T为By=0的非零解,可作为基础解系,故By=β的通解为 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/dr9RFFFM
0

最新回复(0)