首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αs线性无关的充分必要条件是
向量组α1,α2,…,αs线性无关的充分必要条件是
admin
2017-10-12
19
问题
向量组α
1
,α
2
,…,α
s
线性无关的充分必要条件是
选项
A、α
1
,α
2
,…,α
s
均不是零向量.
B、α
1
,α
2
,…,α
s
中任意两个向量的分量不成比例.
C、α
1
,α
2
,…,α
s
,α
s+1
线性无关.
D、α
1
,α
2
,…,α
s
中任一个向量均不能由其余s一1个向量线性表出.
答案
D
解析
(A),(B)均是线性无关的必要条件.例如,α
1
=(1,1,1)
T
,α
2
=(1,2,3)
T
,α
3
=(2,3,4)
T
,虽α
1
,α
2
,α
3
均为非零向量且任两个向量的分量都不成比例,但α
1
+α
2
一α
3
=0,α
1
,α
2
,α
3
线性相关.(C)是线性无关的充分条件.由α
1
,α
2
,…,α
s
,α
s+1
线性无关→α
1
,α
2
,…,α
s
线性无关,但由α
1
,α
2
,…,α
s
…线性无关
α
1
,α
2
,…,α
s
,α
s+1
线性无关.(D)是线性相关的意义.故应选(D).
转载请注明原文地址:https://jikaoti.com/ti/boSRFFFM
0
考研数学三
相关试题推荐
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设A为反对称矩阵,且|A|≠0,B可逆,A、B为同阶方阵,A为A的伴随矩阵,则[ATA(BT)-1]=().
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:(Ⅰ)D(Y),D(Z);(Ⅱ)ρYZ.
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,….n).用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2.…,Xn设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,k3应取何值,才能在使用估计θ时,无偏,并
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0l2:bx+2cy+3a=0l3:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(Ⅰ)求L的方程;(Ⅱ)当L与直线y=ax所围成平面图形的面积为时,确定a的值。
随机试题
甲船舶股份有限公司(简称甲公司)主营业务为复合材料各类船艇的设计、研发、生产、销售和服务,最近一个会计年度经审计的资产总额为58400万元,其股票在上海证券交易所上市交易。甲公司控股股东为A旅游开发公司(以下简称A公司),其持股比例为50%。A公司还拥有B
WhichofthefollowingplaysexploredBernardShaw’sideaof"LifeForce"?()
新生儿出生时呼吸频率约为
公司经营管理发生严重困难,继续存续会使股东利益受到重大损失,通过其他途径不能解决的,持有公司全部股东表决权()以上的股东,可以请求人民法院解散公司。
企业无力支付到期银行承兑汇票票款时,应按应付票据的账面金额借记“应付票据”,贷记()科目。
在开放参观活动中,秘书要做好接待工作包括()。
下列各句表意明确的一项是()。
蔡元培与资产阶级革命教育的实践不包括
设y=y(x)是第一象限内一条向上凸的连续曲线,其上任意一点(x,y)处的曲率半径为R=y3,且此曲线上点(1,1)处的切线方程为y=1,求函数y(x).
情景:你是小学教师。今天一大早醒来,头痛得厉害,而家里没有电话。任务:请你用英语给校长写一张50字左右的便条让儿子送去。告诉他:.你现在感觉如何;.上午打算做什么;.下午如果感觉好点了,准备做什么。请用下面的格式。Mr.White,...
最新回复
(
0
)