首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足___________.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足___________.
admin
2019-07-13
27
问题
设λ
1
,λ
2
,λ
3
是三阶矩阵A的三个不同特征值,α
1
,α
2
,α
3
分别是属于特征值λ
1
,λ
2
,λ
3
的特征向量,若α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关,则λ
1
,λ
2
,λ
3
满足___________.
选项
答案
λ
2
λ
3
≠0
解析
令x
1
α
1
+x
2
A
2
(α
1
+α
2
)+x
3
A
2
(α
1
+α
2
+α
3
)=0,即
(x
1
+λ
1
x
2
+λ
1
2
x
3
)α
1
+(λ
2
x
2
+λ
2
2
x
3
)α
2
+λ
3
2
x
3
α
3
=0,则有
x
1
+λ
1
x
2
+λ
1
2
x
3
=0,λ
2
x
2
+λ
2
2
x
3
=0,λ
3
2
x
3
=0,因为x
1
,x
2
,x
3
只能全为零,所以
≠0→λ
2
λ
3
≠0.
转载请注明原文地址:https://jikaoti.com/ti/biQRFFFM
0
考研数学一
相关试题推荐
设向量α=[a1,a2,…,a2]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设A是n阶实对称矩阵,λ1,λ2,…,λn是A的n个互不相同的特征值,ξ1是A的对应于λ1的一个单位特征向量,则矩阵B=A-λ1ξ1ξ1T的特征值是______.
求解y’’=e2y+ey,且y(0)=0,y’(0)=2.
已知函数u=u(x,y)满足方程试确定参数a,b,利用变换u(x,y)=v(x,y)eax+by将原方程变形,使新方程中不含有一阶偏导数项.
求的反函数的导数.
方程组有解的充要条件是______.
设f(x)在[a,b]上连续,在(a,b)内可导.若f(x)不是一次式也不为常函数,试证明至少存在一点ξ∈(a,b)使
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度。
试证:3arccosx-arccos(3x-4x3)=π,其中
随机试题
()是科学发展观的第一要义。
Inhisopinion,successinlifemainly______onhowwegetalongwithotherpeople.
(2009年第79题)一位外伤性脾破裂患者,术中经血液回收机收集失血处理后,回输给患者的是
某施工合同经法院确认无效后,应认为该合同从( )日起无效。
单位银行结算账户按用途不同分为()。
国家质检总局对向我国输出贸易性栽培介质的国外生产、加工、存放单位实行注册登记制度。 ( )
红星公司于2001年12月30日与佳华租赁公司签订一项协议,与2002年1月1日起租入设备一台,设备系佳华公司为红星公司租赁需要而于2001年12月10日专门购入。设备购买价格为2000万元,支付增值税进项税额340万元、运输费20万元,专业人员服
教师应具备哪些专业能力素养?
中国新民主主义革命必须实现的首要任务是
Fromwhatyouhaveread,wouldyouexpectmannerstoimproveamongpeoplewho_____.Whatisthepossiblemeaningoftheword"
最新回复
(
0
)