设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f″(ξ)≥8.

admin2021-12-14  3

问题 设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f″(ξ)≥8.

选项

答案因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0,[*]f(x)=-1,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f′(c)=0, 根据泰勒公式 [*] 所以存在ξ∈(0,1),使得f″(ξ)≥8.

解析
转载请注明原文地址:https://jikaoti.com/ti/Xt3RFFFM
0

最新回复(0)