首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a]二次可导且f(0)=0,f’’(x)<0.求证:在(0,a]单调下降.
设f(x)在[0,a]二次可导且f(0)=0,f’’(x)<0.求证:在(0,a]单调下降.
admin
2017-08-18
14
问题
设f(x)在[0,a]二次可导且f(0)=0,f’’(x)<0.求证:
在(0,a]单调下降.
选项
答案
【证法一】 对F(x)求导得F’(x)=xf’’(x)<0 ([*]x∈(0,a]). 又F(0)=0,则F(x)<0([*]x∈(0,a]),即xf’(x)一f(x)<0(0<x≤a). 【证法二】 f’’(x)<0意味着f(x)是凸函数,从而曲线在任一点切线的下方,即[*]t∈[0,a]有 f(t)<f(x)+f’(x)(t—x) ([*]x∈[0,a],x≠t).特别地,令t=0时,f(0)=0<f(x)一f’(x)x, 即xf’(x)一f(x)<0 (x∈(0,a]). 【证法三】 由微分中值定理,[*]x∈(0,a],[*]ξ∈(0,x)使得 xf’(x)一f(x)=xf’(x)一[f(x)一f(0)]=xf’(x)一xf’(ξ) =x[f’(x)一f’(ξ)]<0(因为f’(x)单调减少). 【证法四】 由泰勒公式,[*]x∈(0,a],[*]ξ∈(0,x),有 0=f(0)=f(x)+f’(x)(一x)+[*]f’’(ξ)(一x)
2
. 由f’’(ξ)<0[*]f(x)一xf’(x)>0,即xf’(x)一f(x)<0 ([*]x∈(0,a]).
解析
要证
在(0,a]单调下降,只需证明导数
.为此令
F(x)=xf’(x)一f(x),则只需证F(x)<0(
x∈(0,a]).
转载请注明原文地址:https://jikaoti.com/ti/TvVRFFFM
0
考研数学一
相关试题推荐
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)求总体X的分布函数F(x);
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.求参数θ的矩估计量;
(1998年试题,十四)从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?附表:标准正态分布数值表:
(2003年试题,二)设向量组I:α1,α2……αs可由向量组Ⅱ:β1β2……βs线性表示,则().
(2004年试题,三)设z=z(x,y)是由x2一6xy+10y2一2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
设求证:,f(x)为常数;
设D是由曲线y=x3与直线所围成的有界闭区域,则()
设π为过直线L:且与平面x一2y+z一3=0垂直的平面,则点M(3,一4,5)到平面π的距离为_______.
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=(x0,y0=0,(x0,y0>0,(x0,y0)
当x→0时,下列四个无穷小量关于x的阶数最高的是()。
随机试题
两宋时期我国商品经济空前繁荣,与其关系密切的文化现象有()。①传奇出现②词成为文化主流③瓦子、勾栏兴起④出现许多话本⑤杂剧产生⑥绘画成为商品
固定资产因磨损而减少的价值登记在______。
胃阴虚的病理表现:()
对肝性脑病患者生化检测指标不会出现的是
在软土地区基坑开挖深度超过()m,一般就要用井点降水。
下列关于天然大理石的特性,描述错误的是( )。
下列票据中,出票人为银行的有()。
教师和幼儿双方围绕一个问题或主题,自由地发表自己的想法、意见,表达自己的感受、体验,进行相互交流。该教师运用的是()。
几乎每个人的内心深处,都有着对乌托邦和理想社会的向往。反乌托邦主题则是将其逻辑进行推演,最终会发现理想(主要是对制度和技术的崇拜)往往会导致种种无法控制的弊端:极权统治、非人性社会、精神压抑等。与乌托邦批判“旧”或允诺“新”的热度相比,反乌托邦的语汇更加冷
我国为了吸引外国投资,曾对外资企业实行了低于内资企业的税收优惠政策。2007年3月16日,十届全国人大五次会议审议通过了《企业所得税法》,将我国内外资企业所得税统一为25%,内外资企业所得税的统一( )。
最新回复
(
0
)